Formal Methéds Il Smmary

Chapter 2: Formal Languages

Natural Language (english) Formal Language (c++)
+ High expressiveness + Well-defined syntax
+ No extra learning + Unambiguous semantics
- Ambiguity + Can be processed by a computer
- Vagueness + Large problems can be solved
- Longish style — High learning effort
- Consistency hard to check - Limited expressiveness
- Low acceptance

Syntax:
This figure illustrates how a tree representation is a convenient
way of representing the syntax structure of a single phrase:

]
<>

Semantics:

The reason is that verifying the semantics of a phrase is almost impossible,
whereas verifying its syntax is much simpler. To draw a comparison with a formal
language, each compiler can verify whether a C++ code has a correct syntax (if
so, it can be compiled; otherwise, the compiler will generate an error). But no
computer will ever be able to verify that the code corresponds to a meaningful
program!

Grammar:

One possible set of production rules —i.e. a generative grammar —corresponding
to our example is the following (“ | ” stands for “or”):

I — P Punc| P, Punc;

P — SVsO
I — P Punc P, — AuzxSVO
P — SVO S — DetN
S — DetN O = DN
O — Det N V. — chew | bite | lick
. Aux — does | did | will

V. — chews

s ; Det — the|alone|my
‘ . — deila N — dog | bone| frog | child
N — dog |bone Pase —+ J[:|2

Punc —

Pune; — 2|21?

Table 2.2: A simple generative grammar. Table 2.3: A slightly more complex generative grammar.

1

P Punc| P; Punc;

SVsO

> Auz SV O

Det N

Det N

chew | bite | lick

does | did | will

the | a| one | my

Adj N | dog | bone | frog | child

cute | tiny | little | furry | red-haired | big | tasty | white | ...

2| 212

1

< QI ~
|

Ll

Aux
Det
N
Adj
Punc
Punc;

1

!

| A P

N — AdjN _ Table 2.4: A generative grammar with a recursive production rule.

recursion: >

Definition 2.1 (Kleene Star). Let > be an alphabet, i.e. a finite set of distinct
symbols. A string is a finite concatenation of elements of . ¥* is defined as the
set of all possible strings over ..

3" can equivalently be defined recursively as follows:

1. Basis: € € X*.
2. Recursive step: If w € ¥* and @ € ¥, then wa € ¥*.
3. Closure: w € X7 only if it can be obtained from ¢ by a finite number of
applications of the recursive step.
For any nonempty alphabet ., >* contains infinitely many elements.
by 3
0 {e}

{a} {e. a, aa, aaa, . . .}
0,1} | {e0,1,00,01,10,11,000,001,010,011 ...}

[8,% £} | 16,8, %, £,58, $x, 8.8, 48, sk %8, £, Li, L2, 585 5%, ...}

Definition 2.2. A language [over an alphabet Y is a subset of ¥7:
i X

A language is thus a possibly infinite set of finite-length sequences of elements
(strings) drawn from a specified finite set (its alphabet ¥0).

The union of two languages L and M over an alphabet X is defined as:
LUM = {w S | we LVwe ﬂ[}

The intersection of two languages L and M over an alphabet X is defined as:
LNM:= {u* e X | weLAwE ﬂ[}

The concatenation of two languages L and M is defined as:

LM = {uz' | v LAvE ﬂ[}

Example 2.1. [, is the language over ¥ = {0, 1} consisting of all strings that
begins with 1.

Ly ={1,10,11,100,101,.. .}

Lo is the language over X = {0, 1} consisting of all strings that contains an
even number of (’s.

Ly = {e.1,00,11.001,010. 100,0011, . ..}

L is the language over ¥ = {a, b} consisting of all strings that contains as
many «’s and b’s.

Ly = {e, ab, ba, aabb, abab, baba, bbaa, . . .}

L, is the language over 3 = {ux'} consisting of all strings that contains a prime
number of x’s.

fa = {5, 005, CT0EE, SLTTTLE, BETEXRETERE, . . .}
Definition 2.3. A grammar & is formally defined as a quadruple
(= (¥, V, £, 8)
with
e X a finite set of terminal symbols (the alphabet)

e 1/: a finite set of non-terminal symbols (the variables), usually with the
condition that V' N Y = (.

e [’: a finite set of production rules
e S ¢ V' the start symbol.

Non-terminal symbols are usually represented by uppercase letters, terminal sym-
bols by lowercase letters, and the start symbol by S.

A sequence of rule applications is called a derivation.

Example 2.2. Let us consider the following grammar:

Alphabet 3: {0,1,+}
Variables V: {S, N}
Productionrules P: S — N|N+ S
N—-0|1|NN
Start symbol: S

The corresponding language contains simple expressions corresponding to the
additions of binary numbers, such as w = 10 + 0 + 1. One possible derivation of
w is as follows:

This derivation can be represented by the following syntax tree:

<
e R /g\
OZOIRO

n

L I

104+ 8

i+ N~+5
100+ N+ N
10+ N+1
104+0-+1 Figure 2.3: Syntax tree corresponding to one possible derivation of “10 + 0 + 17.

regular grammars

Definition 2.4. All the production rules of a right regular grammar are of the
form:
A—ayz... X

where A is a non-terminal symbol, xyz ... zero or more terminal symbols, and X'
zero or one non-terminal symbol. A /leff regular grammar have productions rules
of the form:

A— Xzyz. ..

A regular grammar is either a left regular or a right regular grammar.
=>append the symbols at either the left or the right during derivation
=> aregular language is a language that can be generated by a regular grammar

Example 2.4. An archetypical regular language is:
V= {u”’b”‘ | m,n > 0}

L is the language of all strings over the alphabet ¥ = {a,b} where all the a’s
precede the b’s: L = {€, a,b,aa,ab,bb, aaa, aab, .. .}.
regular expressions

Regular languages are typically described by regular expressions:
Symbol Stands for...

+ at least one occurrence of the preceding symbol

* zero, one, or more occurrences of the preceding symbol
? zero or one occurrence of the preceding symbol

| logical “or”

€ the empty string

Examples of regular expressions

Regular Expression Elements of the Language

abc abc

a*bc bc, abc, aabc, aaabc, aaaabc, ...
go+gle gogle, google, gooogle, ...
pfeiff?er pfeifer, pfeiffer

pf(ale)ifer pfaifer, pfeifer

context free languages

Context-free languages include most programming languages, and is thus one the central category in the theory
of formal languages.

Definition 2.6. A context-free grammar is a grammar whose productions rules are
all of the form:

A— ...

Definition 2.7. A language L is said to be a context-free language if there exists
a context-free grammar (, such that L = L(G).

In other words, a context-free language is a language that can be generated by
a context-free grammar.
Example 2.5. A simple context-free grammar is
S —aSh|e

It generates the context-free language

¥ = {(Hrbn

1220}

which consists of all strings that contain some number of «’s followed by the same
number of b’s: L = {e, ab, aabb, aaabbb, . . .}.

Backus-Naur Forms (BNF)

A BNF (Backus-Naur form or Backus normal form) is a particular syntax used to
express context-free grammars in a slightly more convenient way. A derivation
rule in the original BNF specification is written as

< symbol > ::= < expression with symbols >
Terminal symbols are usually enclosed within quotation marks (*...” or *...7):

< number >

< digit > | < digit >< number >

wdights g= %07 |1 |2 | %3 %4 | “BF | 67 ¥ | “&* | “9®
Example 2.8. The following grammar in EBNF notation defines a simplified
HTML syntax:

document = element ;
element = (text | list) ™
text = fN..T |%9.2 | .9 | =57F;
list ‘" listElement * “’

‘" listElement * ‘" ;
‘" element ;

listElement

Figure 2.4 shows the syntax tree corresponding to the following simplified
HTML code:

BuyFruitsAppleBananaPastaWater

grammar tree:
A grammar tree is a tree where each link corresponds to the application of one particular production rule, and
where the leafs represent the elements of the language.

S—=N S—=N+S
N N+S
[N0 |
N—-0/ N—1 - NN ./ N—NN
/ Y \ y 4 v
0+8S NN+ S N+N N+N+S
NN
~ ! ~
7T ~ (BN
N=o !N NN AN

parsing:

Parsing (also referred more formally to as “syntactic analysis”) is the process of analyzing a sequence of
symbols (or more generally tokens) to determine its grammatical structure with respect to a given formal
grammar.

€243 — @
& O

Figure 2.6: The process of parsing. Left: the input string. Right: the correspond-
ing parse tree showing the syntactical structure.

ambiguity:

A grammar is said to be ambiguous if the language it generates contains some string that have more than one
possible parse tree.

example: “2-3-4"=>(2-3)-4=-50r2-(3-4)=3

() ()

1 O

OO o
OO

() (b)

Ogll
ol

Figure 2.7: Two parse trees showing the two possible derivations of the input
string “2 — 3 — 47

=> |leftmost-derivation and rightmost-derivation

make grammar unambiguous (example "2-3*4):

S — FE

E - T|E+T|E-T

T - F|TxF S E-T=T-T

F 4 N F—-T=N-T=2-T
N — 2|34 2-TxF=2-FxF

2—-NxF=2-3xF
2—3xN=>2-3x4

44y

Table 2.6: A simple unambiguous context-free grammar. __

context sensitive languages

Definition 2.12. A grammar G = (X, V| P.S) is called context-sensitive if each
rule has the form v — v, where u,v € (X U V)™, and |u| < |v].

In addition, a rule of the form S — ¢ is permitted provided S does not appear
on the right side of any rule. This allows the empty string € to be included in
context-sensitive languages.

Example 2.9. A typical example of context-sensitive language that is not context-
free is the language
L= {a”b”(t” | n > 0}

which can be generated by the following context-sensitive grammar:

S
A
Chb
Cc

aAbc | abe
aAbC | abC
b

cc

—
RN
—
—

The last rule of this grammar illustrates the reason why such grammars are
called “context-sensitive”: C' can only be replaced by ¢ in a particular context —
namely when it is followed by a c.

unrestricted grammar:

Definition 2.14. An unrestricted grammar is a formal grammar G = (X, V, P, 5)
where each rule has the form « — v, where w,v € (X U V)T, and u # .

As the name implies, there are no real restrictions on the types of production
rules that unrestricted grammars can have.

Chomsky Hierarchy

i
Eregular - Ecomexi-t‘ree C Ecomext-sensilive C £Ll:11'estriclecl C P(E)

where L, is the set of all languages generated by a grammar of type type, and
P(X") the power set of X, i.e. the set of all possible languages.
The Chomsky hierarchy is summarized in Table 2.7.

Type Grammar Production Rules Example of Language
0 Unrestricted a— O
1 Context-Sensitive aAjf — ay {a"b"c™ | n > 0}
2 Context-Free A — {a"b™ | n > 0}
3 Regular A—cel|lalaB {a™b" ‘ m,n > 0}

Table 2.7:

The Chomsky hierarchy.

undecidable problems

1. The recognition problem

Given a string w and a grammar G, is w € L(G)?

2. The emptiness problem
Given a grammar G, is L(G) = (12

3. The equivalence problem
Given two grammars G and G, is L(G1) = L(G4)?

4. The ambiguity problem
Given a grammar G, is G ambiguous‘?‘

Type Problem: (,/ = decidable, [] = undecidable)
I. Recognition | 2. Emptiness | 3. Equivalence | 4. Ambiguity
0 OJ O m 0]
1 V4 ml O] O]
2 v V4 0 0
3 v v v vV

Table 2.8: Decidability of problems in the Chomsky hierarchy.

Chapter 3 Automata Theory

computation
"Does a particular string w belongs to a given language L or not?"

Definition 3.1. A decision problem is a mapping
{0,1}" — {0, 1}

that takes as input any finite string of (s and 1’s and assign to it an output con-
sisting of either 0 (*no™) or 1 (“yes”).

Definition 3.2, The O notation (pronounce: big oh) stands for “order of” and is
used to describe an asymptotic upper bound for the magnitude of a function in
terms of another, typically simpler, function.

Finite State Automata

A finite state automaton (plural: finite state automata) is an abstract machine that
successively reads each symbols of the input string, and changes its state according
to a particular control mechanism. If the machine, after reading the last symbol

of the input string, is in one of a set of particular states, then the machine is said

to accept the input string. It can be illustrated as follows:

Tape (with Input String)

a b c

b

a a (o b

Read Head

I

(3% -1

Mgt

State

Direction of Motion

Figure 3.1: Illustration of a finite state automaton.

Definition 3.3. A finite state automaton is a five-tuple
(@, X, 0, g0, F)
consisting of:
1. €: a finite set of states.
2. 3% a finite set of input symbols.

3. 8:(q.s) € Q@ x X+ ¢ € (: atransition function (or transition table)
specifying, for each state ¢ and each input symbol s, the next state ¢" of the
automaton.

4. gp € (): the initial state.
5. F C : asetof accepting states.
Example 3.3. Consider the example used in the introduction of this section, namely

the search for the sequence “abc” (see Listing 3.1). The corresponding finite state
automaton is:

| a b ¢

—qo | 91 4Go 4qo
q1 g1 g2 4o

q2 1 g1 o 43

Blea @ @

Figure 3.2: State diagram of a finite state automaton accepting the strings contain-
ing “abc”.

Nondeterministic Finite Automata

Definition 3.4. A nondeterministic finite automaton is a five-tuple

(Q.3.4,q0. F)

consisting of:
1.) a finite set of states.
2. X: a finite set of input symbols.

3. 0:(q.8) € QxT— {qi, gj. ...} € (): atransition function (or transition
table) specifying, for each state ¢ and each input symbol s, the next state(s)
14, 45, - ..} of the automaton.

4. gp € ¢ the initial state.

5. F < @: aset of accepting states. An input w is accepted if the automaton,
after reading the last symbol of the input, is in ar least one accepting state.

Example 3.5. The transition table & of the nondeterministic finite automaton
shown in Figure 3.3 is the following:

a b c
—q [{g. e} {w} {w}
qi o {e} 0
P] @ {qs}
g | {m} A{w)} (&}

ol o®

abo

Figure 3.3: State diagram of a nondeterministic finite automaton accepting the
strings containing “abe”.

Theorem 3.1. Every language that can be described by an NFA (i.e. the set of all
strings accepted by the automaton) can also be described by some DFA.

regular languages

In summary, it can be shown that any regular language satisfies the following
equivalent properties:

It can be generated by a regular grammar.

It can be described by a regular expression.

It can be accepted by a deterministic finite automaton.

[t can be accepted by a nondeterministic finite finite automaton.

The “Pumping Lemma” for Regular Languages

Lemma 3.1. Let L be a regular language. Then, there exists a constant n (which
depends on L) such that for every string w € L with n|or more symbols (|w| > n),
we can break w into three strings, w = ryz, such that:

—

.|yl >0(iey+#e)
2 |zy| < n
3. Forallk > 0, the string xy*z is still in L. (v == yy.. . y)
= g Ty Y 9’:’. Y
: rmes

In other words, for every string w of a certain minimal length, we can always
find a nonempty substring y of w that can be “pumped”; that is, repeating y any
number of times, or deleting it (the case of k = 0), keeps the resulting string in
the language L.

proof is in the script... not really important

examples for applications of finite state automata:

e Regular expressions

e Software for scanning large bodies of text, such as collections of web pages.
to find occurrences of words or patterns

e Communication protocols (such as TCP)
e Protocols for the secure exchange of infi ormaﬁion
o Stateful firewalls (which build on the 3-way handshake of the TCP protocol)

o Lexical analyzer of compilers

Push-Down Automata

=> In general the same like FSA, but with a external memory (stack) to remember states:

Tape (with Input String)

b b b

a

a

c

a

£

a

c

Read Head

/ N
(. /” Direction of Motion

£
i3
&

Stack

Figure 3.6: Illustration of a push-down automaton.

Parser Generator

Inpat
String O

2+3x4

Figure 3.7: A parser transforms input strings into parse trees according to a given
grammar.

Parser Generator
T
¥
Parser Parse Tree
Senme : o
2+3x4 ® .a
+3x ©) O

Figure 3.8: A parser generator creates a parser from a given grammar.

Example 3.7. yacc is a parser generator that uses a syntax close to the EBNE.
The following (partial) listing illustrates an input grammar that can be transformed
into a parser for simple mathematical expressions using integers, the operators

i

“47 “—"and “x” as well as parenthesis “(” and “)™
%token DIGIT

lire : expr

expr @ term

term : £

factor : number
L4r axprt)

number : DIGIT
number DIGIT

Compiler Compilers

A compiler compiler is a program that

¢ lakes as input a grammar complemented with atomic actions for each of its
production rule, and

e generates a compiler (or to be more exact. a interpreter) that not only checks
for any input string the correctness of its syntax, but also evaluates it.

vace | ANTLR.

|
Compiler (C / Java)

H

2+3x4

Figure 3.9: Overview of what a compiler compiler does. From a given gram-
mar complemented with atomic actions (the “what™), it automatically generates

a interpreter that checks the syntax and evaluates any number of input string (the
“hOW”).

Example 3.8. yacc is in fact also a compiler compiler (it is the acronym of “yet
another compiler compiler™). The following lines illustrates how each production

rule of the grammar provided in Example 3.7 can be complemented with atomic|
actions:

line : expr

.

printf("result: %i\m", $1); }

eXpr : term { %% = $17 |}
| expr *+' term { $%5 = $1 + $3; }
| expr ‘-’ term { 5% = $1 - $3;)
i
term : factor { $% = 517 }
term *x' factor [58 = 81 = §3;
i
factor : number [55 =351; }
*4f expr.’)? [58 = 527 |
P
number : DIGIT [$& = %17 }
number DIGIT [% =10 = §1 + §2;

The point of this example is that the above listing provides in essence all what
is required to create a calculator program that correctly evaluate any input string
corresponding to a mathematical expression. such as “2 + 3 x 4" or “((12 — 4) x
T+42) x 97,

=> ANTLR better than yacc, because it provides very powerful framework for constructing recognizers,
interpreters, compilers and translators from grammatical description containing actions, but also generates a
very transparent code.

Turing Machines

Definition 3.5. A Turing machine is an automaton with the following properties:

¢ A tape with the input string initially written on it. Note that the tape can be
potentially infinite on both sides, but the number of symbols written at any
time on the tape is always finite.

o A read-write head. After reading the symbol on the tape and overwriting
it with another symbol (which can be the same), the head moves to the next
character, either on the left or on the right.

® A finite controller that specifies the behavior of the machine (for each state
of the automaton and each symbol read from the tape, what symbol to write
on the tape and which direction to move next).

¢ A halting state. In addition to moving left or right, the machine may also
halt. In this case, the Turing machine is usually said to accept the input. (A
Turing machine is thus an automaton with only one accepting state H.)

The initial position of the Turing machine is usually explicitly stated (otherwise,
the machine can for instance start by moving first to the left-most symbol).

Tape
INEDRODOGONNE
A y
Read/Write Head
/{'}'\
(H o1 Can Move Either Way
\2
State

Figure 3.10: [lustration of a Turing machine.

Example 3.10. The reader is left with the exercise of finding out what the follow-
ing Turing machine does on a tape containing symbols from the alphabet {a. b, c}.

The rows correspond to the state of the machine. Each cell indicates the sym-
bol to write on the tape. the direction in which to move (L or R) and the next state
of the machine.

a b o i
OfalL0 BLO e¢LO _R1
l1{bR1 aR1 c¢R1 Halt

Recursively Enumerable Languages

Definition 3.6. A recursively enumerable set is a set whose members can simply
be numbered. More formally, a recursively enumerable set 1s a set for which there
exist a mapping between every of its elements and the integer numbers.

Linear Bounded Turing Machines

The automaton that corresponds to context-sensitive grammars (i.e. that can recognize elements of context-
sensitive languages) are so-called linear bounded Turing machines. Such a machine is like a Turing machine, but
with one restriction: the length of the tape is only k - n cells, where n is the length of the input, and k a constant
associated with the machine.

Universal Turing Machines

Definition 3.7. A universal Turing machine U is a Turing machine which, when
supplied with a tape on which the code of some Turing machine M is written
(together with som-'; input string), will produce the same output as the machine
M.

Multitape Turing Machines

=>important, because it is easier to see how a multitape Turing machine can simulate real computers,
compared with a single-tape model.

AL L fedefefefTe-T T I-
!
SENIEEEEEEERE

Figure 3.11; IMustration of a multitape Turing machine. At the beginning, the
input is written on one of the tape. Each head can move independently.

Nondeterministic Turing Machines

=>the NTM are to standard TM what NFA are to DFA

Theorem 3.2. If My is a nondeterministic Turing machine, then there is a deter-
ministic Turing machine My, such that L(NMy) = L(Mp).

The P = NP Problem
=> how the number of steps to perform a computation grows with input increasing length

Example 3.11. The subset-sium problem is an example of a problem which is easy
to verify, but whose answer is believed (but not proven} to be difficult to compute.

Given a set of integers, does some nonempty subset of them sum to 07 For
instance, does a subset of the set {—2, —3, 15, 14,7, —10} add up to 0? The an-
swer is yes, though it may take a while to find a subset that does, depending on
its size. On the other hand, if someone claims that the answer is “yes, because
{—2, —3,—10,15} add up to zero”, then we can quickly check that with a few
additions.

Definition 3.8. P is the complexity class containing decision problems which
can be solved by a deterministic Turing machine using a polynomial amount of
computation time, or polynomial time.

Definition 3.9. NP — nondeterministic. polynomial time — is the set of deci-
sion problems solvable in polynomial time on a nondeterministic Turing machine.
Equivalently. it is the set of problems whose solutions can be “verified” by a de-
terministic Turing machine in polynomial time.

The relationship between the complexity classes P and NP is a famous un-
solved question in theoretical computer science. It is generally agreed to be the
most important such unsolved problem; the Clay Mathematics Institute has of-
fered a US$1 million prize for the first correct proof.

In essence, the P = NP question asks: if positive solutions to a “yes or no”
problem can be verified quickly (where “quickly” means “in polynomial time”),
can the answers also be computed quickly?

The Church-Turing Thesis

Every function which would naturally be regarded as computable can
be computed by a Turing machine.

Due to the vagueness of the concept of effective calculability, the Church-Turing
thesis cannot formally be proven. There exist several variations of this thesis, such
as the following Physical Church—Turing thesis:

Every function that can be physically computed can be computed by
a Turing machine.

The Halting Problem
It is nevertheless possible to formally define functions that are not computable. One of the best known
example is the halting problem: given the code of a Turing machine as well as its input, decide whether the

machine will halt at some point or loop forever.

The Chomsky Hierarchy Revisited

Language Automaton
{e.g. regular expressions)

i o (.. Emite staie machine)

describes lanpuage and

penerates elements gl by

Grammar

(e.p. Tepular srammar}

Figure 3.12: Relation between languages, grammars and automata.

Type Grammar Language Automaton
Unrestricted Recursively Enumerable . :
0 a— 3 e.g. {a” | n € N, n perfect} B
: Context-Sensitive Context-Sensitive Linear Bounded
aAf — av8 e.g. {a"b"c" | n > 0} Turing Machine
5 Context-Free Context-Free Push-Down
A—n e.g. {a"h" | n > 0} Automaton
3 Regular Regular Finite State
) A—c¢€|lalaB eg. {a™h" | m,n = 0} Automaton

Table 3.1: The Chomsky hierarchy.

Chapter 4: Markov Processes

=>a Markov process is a stochastic extension of a FSA. In a Markov process, state transitions are probabilistic,
and there is -in contrast to a FSA- no input to the system. The system is only in one state at each time step.

Process Diagrams

Figure 4.1: Process diagram of a Markov process.
Formal Definitions

Definition 4.1. A Markov chain is a sequence of random variables Xy, X9, X3, ...
with the Mru'kov| property, namely that the probability of any given state X, only
depends on its immediate previous state .X,,_;. Formally:

PlXy==x

K= w M= 8= PXo = # | Koo © 854
where P(A | B) is the probability of A given B.

transition matrix

Example. The state space of the “hamster in a cage™ Markov process is:

S = {sleep, eat, exercise }

and the transition matrix:

0.9 07 0.8
P=| 005 0 0
0.05 0.3 0.2

The transition matrix can be used to predict the probability distribution x(™ at
each time step n. For instance, let us assume that Cheezit is initially sleeping:

1
xX0=10
0
After one minute, we can predict:
0.9
tW=P.xW= | 005
0.05

Thus, after one minute, there is a 90% chance that the hamster is still sleeping,
5% chance that he’s eating and 5% that he’s running in the wheel.

Similarly, we can predict that after two minutes:

0.885
<@ =p.x0O=[0045
0.07

Definition 4.2. The process diagram of a Markov chain is a directed graph de-
scribing the Markov process. Each node represent a state from the state space.
The edges are labeled by the probabilities of going from one state to the other
states. Edges with zero transition probability are usually discarded.

Stationary Distribution
=> after certain time the probability distribution converges towards a stationary distribution

Example. The stationary distribution of the hamster

I
X — I

I3

can be obtained using Equation 4.1, as well as the fact that the probabilities add
up to x1 + a9 + 3 = 1. We obtain:

T I 0.9 07 08 T
x'=| m — Ty — 0.05 0 0 . 9
T3 1 —x — a9 0.05 0.3 02 1 — 21— a9

From the first two components, we get:
1 = 0921 +0.Tr9 +0.8(1 — 1 — x9)
Ig = 0.051‘1

Combining the two equations gives:

0.905z; = 0.8

so that:
0.8]
ry = ~ (.89
. 0.905
r9 = 0.05x; =~ 0.044
rg = 1—1x1— 19 = 0.072
0.89
x" = 0.044
0.072

In other words, if we observe the hamster long enough, the probability that it
will be sleeping is z; = 89%, that it will be eating xo = 4%. and that it will be
doing some exercise x3 = 7%.

Hidden Markov Models

=> Markov process with unknown parameters. In HMM states are not visible like in MM => the observer sees
an observable (or output) token. Each hidden state has a probability distribution, called
emission probability, over the possible observable tokens.

1) vy . r

Figure 4.2: ustration of a hidden Markov model. The upper part (dashed) rep-
resents the underlying hidden Markov process. The lower part (shadowed) repre-
sents the observable outputs. Dotted arrows represent the emission probabilities.

Example 4.1. Assume you have a friend who lives far away and to whom you talk
daily over the telephone about what he did that day. Your friend is only interested
in three activities: walking in the park, shopping, and cleaning his apartment. The
choice of what to do is determined exclusively by the weather on a given day. You
have no definite information about the weather where your Iriend lives, but you
know general trends. Based on what he tells you he did each day. you try to guess
what the weather must have been like.

You believe that the weather operates as a discrete Markov process (i.e. a
Markov chain). There are two states, “Rainy” and “Sunny™, but you cannot ob-
serve them directly — they are hidden from you. On each day, there is a certain
chance that your friend will perform one of the following activities, depending
on the weather: “walk”, “shop’, or “clean”. Since your friend tells you about his
activities, those are the observations.

Furthermore, you know the general weather trends in the area, and what your
friend likes to do on average.

Concerning the weather, you known that:

e [f one day is rainy, there is a 70% chance that the next day will be rainy too.

e [f one day is sunny, there is 40% chance that the weather will degrade on
the next day.

Your friend’s general habits can be summarized as follows:

e [f it is rainy, there is a 50% chance that he is cleaning his apartment, and
only 10% chance that he goes out for a walk.

e If it is sunny, there is a 60% chance that he is outside for a walk, 30%
chance that he decides to go shopping and 10% that he stays home to clean
his apartment.

The entire system is that of a hidden Markov model (HMM). The hidden
state space is S = {Rainy, Sunny}, and the possible observable output state
O = {walk, shop,clean}. The transition probability matrix (between hidden

states) is:
0.7 04
b= (0.3 0.6)

Finally, the emission probabilities are:

| Rainy Sunny
walk | 0.1 0.6
shop | 04 0.3
clean | 0.5 0.1

The whole model can also be summarized with the following diagram:

07 .77 S/ T~ 06
ra i A}
i *‘,__ P 4 \
l‘ ’/ "‘\ —_qé’i I, "\ \
—— v\ - Ly \ -

! Rainy | 4. __-- Sumny ,
. [L \ ’
R 0.4 b
05
- 0.6 ;
, ' 03 ‘
P 04 ‘ 0.1
0.1 k :
\ I 4 ¥
walk shop clean

Figure 4.3: Diagram of a hidden Markov model.

Applications of Hidden Markov models include text recognition, predictive text input systems of portable
devices and speech-to-text software.

Viterbi Algorithm => | don't think that this is part of the relevant stuff... for a good summary take the script.

The Viterbi algorithm is an efficient algorithm that finds the most likely
sequence of hidden states given a sequence of observations.

Chapter 5: Logic

Definition of a Formal System

Definition 5.1. In logic, a formal system consists of:
(a) a formal language,

(b) a set of axioms,

(c) a set of inference (or transformation) rules.

The choice of these defines the power of the system (which assertions can be
expressed) and its properties (completeness, decidability, etc.).

Propositional Logic
language
The language of propositional logic consists of:

e aset P of atomic formulas, consisting of e.g. symbols such as p, g, ...
o the following logical connectives:

— negation

A logical “and”

V logical “or”

— logical implication (*if ... then™)

— equivalence (“if and only if”)
e auxiliary symbols: (" and *)”

Definition 5.2. Propositional formulas can then be constructed from the symbols
of the language by a recursive definition:

(i) Every atomic formula p € F is a propositonal formula.

(ii) If the expressions A and I3 are propositional formulas, then the expressions
A (AANB),(AV B). (A — B).(A < B) are propositional formulas.

(iii) Every propositional formula arises from a finite number of application of (i)
and (ii).

Example 5.1. If P = {p. ¢.+} is a set of atomic formulas, then the expressions
e 7, g and r are propositional formulas according to (i)
e —pand (¢ A r) are propositional formulas according to (ii)
e (—p — (g Ar)) is a propositional formula according to another application
of (ii)
Alternatively, propositional (or well-formed) formulas can also be generated

by means of a grammar:

(formula) — (atomic formula) |(propositional formula)
(atomic formula) — T | F|p|q]|r] ...
(propositional formula) — ((formula))
| (formula){connector) (formula)

| —(formula)

(connector) — A|V | — | «

where 7" and F' stand for the logical “true” and “false” values.
This grammar still contains some ambiguity as long as the priority of connec-
tors is not defined. Priority is defined as follows:

1. The negation — has the highest priority,
2. followed by the logical “and™ (A),

3. the logical “or” (V),

4. and the logical implications (—,).

Alternatively, parenthesis can be used, which also makes a logical expression
more readable. For instance, A A =B V C' — D can also be written as ((A A
(-B))vC)— D.

Now we are able to construct propositional (or well-formed) formulas.

Semantics

Definition 5.3. A propositional formula A is satisfiable, if there exists an inter-
pretation of its atomic formulas (assigning truth values to all of them) such that A

is true.
Definition 5.4. Let M be a set of formulas. If a fomula A is true in every inter-

pretation in which all formulas of M are true, then A is a tautologic consequence
of M and we write M F A.

Definition 5.5. If A is true in all interpretations, it is called a rautology. This is
written as F A. In other words, F A implies that M F A is valid for any M. An
example of a tautology is PV = P.

Definition 5.6. Contradiction: If a statement is always false for all interpretations,
itis called a contradiction. An example of contradiction is P A —P.

Formal System

axioms

A particularly compact and well-known axiom system for propositional logic
is the following (after Jan Lukasiewicz):

p — (¢g—p) (Al
p—(g—r) — (P—a—>p—r1) (A2)
(p——q9) — (¢—0p) (A3)

Note that other axiom systems are also possible.
Inference Rules

Propositional logic has a single inference rule: Modus ponens.
Modus Ponens

r — g
P
q
Example 5.2. Let us replace p with bad weather and g with T_stay home. If

we assume the axioms bad weather — T _stay home aswellasbad weather,
we can derive, using modus ponens, the formula I _stay home:

badweather — I_stay_home
bad weather

I stay home

All theorems of propositional logic can be derived from the three axioms and
the single inference rule.

proofs
Definition 5.7.

(i) A finite sequence of formulas Aq, Ao, ..., - A, is the proof of a formula A,
it A, is the formula A and for any ¢, formula A; is either an axiom or it is
derived from previous formulas A; (j < i) by modus ponens.

(ii) If there exists a proof of formula A, we say that A is provable in proposi-
tional logic and we write - A.
Definition 5.8. Proof from assumptions. Let T' be a set of formulas. We say that
formula A is provable from 7" and write 7'+ A if A can be proven from axioms

and formulas in 7', by using the inference rule. That is we have basically enriched
the set of axioms by the formulas in 7.

theorems
de Morgan’s Rules

L. (=(PVQ)) < (=P)A(=Q)

2. ((PAQ)) = (=P)V(=Q)
Distributive Laws

. (PV(QAR))«— (PVQ)AN(PVR))

2. (PAN(QVR)«— ((PANQ)V(PAR))

completeness

Theorem 5.1 (Post). For every propositional formula A
FA ifandonlyif F A

This means that, in propositional logic, tautologies are provable, and what is
provable is a tautology. Thus, the formal system of propositional logic is not only
sound (i.e. generates only valid formulas) but also generates all of them.

Theorem 5.2 (completeness of propositional logic). Let T' be a set of formulas
and A a formula. Then

THA ifandonlyif TEA

This is a more general version of Post’s theorem. In a sense, completeness implies
that loosely speaking syntax and semantics are equivalent in this case. This is by
no means true for any formalism (see below).

Normal Forms of Propositional Formulas

Every propositional formula can be expressed in two standard or normal forms:
Definition 5.9 (Conjunctive normal form — CNF). A formula in CNF has the
following form:

(‘41\/...\/‘41\.0/\(Bl\/,.,\/Bj\[)/\,..
Definition 5.10 (Disjunctive normal form — DNF). A formula in DNF has the
following form:

(;41/\.../\441\?) vV (Bl/\.../\BM) AV
Predicate Calculus (First Order Logic)
language

Definition 5.11. First order language contains:

(1) An unlimited number of symbols for variables: =, vy, z, ...
(ii) Symbols for logical connectives: =, A, V, —, <.

(iii) Symbols for quantifiers: the universal quantifier vV (“for all”"), and the exis-
tential quantifier 3 (“there exists™).

(iv) Symbols for predicates: p,q, ...

Predicates are relations. The arity of a predicate symbol specifies the num-
ber of arguments of the predicate. For example, equality “=" is a binary
predicate (its arity is 2).

(v) Symbols for functions: f. g, ...

The arity of a function symbol specifies the number of arguments of the
function. Function symbols of arity 0 are constants.

cep s.)!v

(vi) Auxiliary symbols: (7,

This language is called first order because one can only quantify over variables
(forindividuals), such asin (VP)inhabitant_of Prague(F) — mortal(P).
However, one cannot quantify over predicates, i.e. one cannot say “V inhabitants
of Prague”.

Definition 5.12 (Expression). An expression is any sequence of symbols of a par-
ticular language.

Definition 5.13 (Term). An rerm is an expression defined recursively as follows:
(i) Every variable is a term.

(i1) If the expressions fy,. .., t, are terms and [is an n-ary function symbol,
then f(tq...., t,,) is a term.

(iii) Every term arises from a finite number of applications of (i) and (ii).

Example 5.6. In number theory &, x + y, are terms. The latter term could also be
written as +(x, i), where + is our f (but it is conventional to write these binary
predicates in infix notation).

Definition 5.14 (Formula). A formula is defined recursively as follows:

(i) If p is an n-ary predicate symbol and the expressions %1, ...,%, are terms,
then the expression p(fy,....t,) is an atomic formula.

(ii) If the expressions A and B are formulas, then the expressions —A. (A A
B),(Av B).(A — B),(A «< B) are formulas.
(iii) If x is a variable and A a formula, then (V) A, (dx)A are formulas.

(iv) Every formula arises from a finite number of applications of (i) to (iii).

Definition 5.15 (Theorem). A theorem is a formula that is valid, i.e. a formula
that is logically true in the given formal system.

Semantics

Scope of a Quantifier

The definition of the scope of a quantifier is illustrated in the following example.

Example 5.8. For every human x there exists a human y that loves x. Stated
formally:
Y, (human(z) — Jy (human(y) A loves(x, y)))

~

~
scope of y

scope of =
Definition 5.16.
(i) A given occurrence of a variable « in a formula A is bounded, if it is part of
a subformula of A (i.e. a substring of A that is also a formula) of the form
(dx)B or (V) B. If an occurrence is not bounded, it is free.
(ii) A variable is free in A, if it has a free occurrence there.

A variable is bounded in A, if it has a bounded occurence there.

(iii) Formula A is open, if it does not contain any bounded variable.

Formula A is closed, if it does not contain any free variable.
Example 5.9. Formula A:
(Vo) (z — y)

In formula A, 2 has a bounded occurrence by the quantifier ¥, and hence it is
bounded in A, whereas y is not quantified and hence it has a free occurrence and
thus is free in A. Formula A is neither open nor closed.

Formal System

la) Axioms for logical connectives
(A1) — (A3) from propositional calculus

Thus, the whole propositional logic becomes a ‘subset” of predicate logic. Tau-
tologies of propositional calculus are automatically theorems of predicate cal-
culus.

1b) Inference rule: Modus ponens
2) Axioms for quantifiers

2a) Specification scheme: Let A be a formula, = a variable and ¢ a term that
can be substituted for z into A

(Vo)A — A,ft]

2b) “Jump scheme:” A, B are formulas, x a variable which is not free in A,
then

(Va)(A — B) — (A — (Vx)B)

Comment: This is a rather technical axiom, to be used in prenex opera-
tions.
3) Inference rule: Universal generalization For an arbitrary variable x, from a
formula A, derive (Vr)A.

Comment: This shows the role of free variables in theorems. Whenever you
can prove a formula A with a free variable -, then you can prove also a formula
(V) A. This is because, from a semantic point of view, for free variables you
would have to check all possible interpretations anyway.

Rules of Manipulation

Permutation
Ve (Vy(P(z,y))) < Yy(Vz(P(z,y)))

A similar rule can be shown for the existential quantifier.

Negation
=(¥2(L(x))) « Ix(—P(x))

For the negation of the universal quanitifer it suffices to show that there exists one
case for which = P(x).

Nesting/Applicability
(War 2 Pl)) A G ¥z 2 (Pm) NG

Here, & appears in P, but not in (). Therefore it does not affect the truth value of
() when it is grouped with P with respect to . Similar argumentation holds true
for the existential quantifier.

Prenex normal form
is the normal form for predicate calculus (like CNF and DNF for propositional calculus)

Definition 5.17. We say that formula A is in prenex form, if it has the following
form:
(Qlfl) i %@ (Q”.l’n)B

where

1. Q; are either V or 3

2. B is an open formula (i.e. all variables are free in it)
3. xy...x, are all different

B is called an open core of A and the sequence of quantifiers is called prefix.

Chapter 6: Cellular Automata

Cell Lattice
space (1)
space (1) - : '
_ B 5 J| t+1
[T T T [[]* space () || |1+
time () Y i i
"“_ t+1
i1 i i+l
tmm
(a) (b)

Figure 6.1: Illustration of a (a) I-dimensional CA and (b) 2-dimensional CA. The
light gray cells are the neighboring cells of the dark gray cell.

Local Rules

a;_1(t) a;(t) a;q(t) | a;(t+1)
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0

Table 6.1: Example of a set of local rules for a 1-dimensional CA with a neigh-
boring radius of r = 1 and k = 2 possible states.

Initial and Boundary Condition

initial conditions:
- seed (all cells are in the state 0 except one)
- random (initial state of each state is chosen randomly)

boundary conditions:

- fixed (It is assumed that there are “invisible” cells next to the border-cells which are in a given predefined
state)

- cyclic (It is assumed that the cells on the edge are neighbors of the cells on the opposite edge as depicted)

One-Dimensional Cellular Automata

We will now explore® the simplest possible kind of cellular automata, namely
1-dimensional CA with a neighborhood radius of » = 1 and a binary state space
(k= 2).

eI === =l== ===
o o o 0o 0 0 0 0 =0
| | | o | o | oo | o | oo
o o o 0o o0 0 o0 1 =1
| || | e | oo | o |
[m] [m] [m] O [m] [m] [] [m]
o o o o o o 1 o0 =2

Figure 6.3: Graphical representation of the rule for the cellular automaton speci-
fied by Table 6.1.

H‘
I

L_‘
I
2 = O

L_‘
I

L.,
I

L_‘
I
e

(a) (h)

Figure 6.4: Time evolution of the cellular automaton. The individual time steps (a)
can be shown with one array of cells (b).

Simple Patterns

A certain number of rules lead to simple patterns, as shown in Figure 6.6.

i1 sl u) EEljm jJiu EjEE JinEE|
O] O n n]] O

0 1 0 1 1 1 1 0 =94

Figure 6.6: A simple repetitive pattern.

Fractals

Figure 6.7: A fractal pattern.

Each of these pieces is essentially just a smaller copy of the whole pattern, with
still smaller copies nested in a very regular way inside it.

Pattern with nested structure of this kind are often called fructuls or self-
similar.

Chaos

=> neither simple nor fractal pattern

0 0 0 il 1 1 1 0 =30

Figure 6.9: A chaotic pattern.

Edge of Chaos

=> between chaos and regularity

0 I 1 0 1 1 i 0 =110

Figure 6.12: A pattern which seems neither highly regular nor completely random.

The Four Classes of Cellular Automata (by Wolfram)

6.4.1 Class1

Figure 6.14 illustrates different patterns produced by cellular automata of class 1.
In this class, the behavior is very simple, and almost all initial conditions lead to
exactly the same uniform final state.

Such systems evolve to simple “limit points™ in phase space (a point being one
particular configuration, such as all cell in state 0), and are thus said to have point

attractors.
R e & R o bt S St i -rvr-r rwv'r"v"*vw*"

(a) rule 128 (b) rule 168 (c) rule 250

Figure 6.14: Cellular automata of class 1.

6.4.2 Class?2

Patterns produced by cellular automata belong to class 2 are shown in Figure 6.15.
In this class, there are many different possible final states, but all of them consist
just of a certain set of simple structures that either remain the same forever, or
repeat every few steps.

Such systems evolve to “limit cycles”, and are thus said to have periodic at-
tractors.

(a) rule 36 (b) rule 108 (c) rule 178

Figure 6.15: Cellular automata of class 2.

6.43 Class3

In class 3, illustrated in Figure 6.16, the behavior is more complicated, and seems
in mayn respects random, although triangles and other small-scale structures are
essentially always at some level seen.
Such systems are said to have stra
EELEEAIE :
the Ip) ol

T
,;‘:iﬁﬁ#
LR

Ef
:-;-?
i
Zha

e
T

_I,l]'

(a) rule 30 (b) rule 150 (c) rule 182

Figure 6.16: Cellular automata of class 3.

6.44 Class 4

Class 4 correspond to the “edge of chaos™ between class 2 and class 3. It involves
a mixture of order and randomness: localized structures are produced which on
their own are failry simple, but these structures move around and interact with

(a) rule 54 (b) rule 110 (¢) rule 147

Figure 6.17: Cellular automata of class 4.
Sensitivity to Initial Conditions

Class 1: Small changes always die out, and there is no change in the final state.

Class 2: Small changes may persist, but always remain localized in small region
of the system.

Class 3: Any change typically spreads at a uniform rate, eventually affecting ev-
ery part of the system.

Class 4: Changes spread only when they are in eftect carried by localized struc-
tures that propagate across the system. Class 4 systems are once again
somewhat intermediate between class 2 and class 3.

IZ:::F:Iy T - EE A]

1 1T i

(a) Class 1

[

(c) Class 3 (d) Class

Figure 6.18: The effect of changing the color of a single cell in the initial condi-
tions for typical cellular automata from each of the four classes. The black dots
indicate all the cells that change. (Wolfram, 2002, p. 250)

Langton's Landa-Parameter

=> If most of the entries in a rule table of a cellular automata are zero, then the pattern will most probably
always converge to the empty configuration. The more entries in the rule table are different from zero, higher
is the probability of obtaining complex or chaotic patterns.

N —ng

A =
N

N = number of entries in the rule table of a CA, nO = number of zeros in the rule table

0)\‘ 1

Figure 6.20: Langton’s A parameter classifies cellular automata into the four dif-
ferent classes. Class 4 lies at the edge of the region with chaotic regime.

Computation at the Edge of Chaos

We have seen so far the cellular automata belonging to class 4 have the interesting property of being neither
too simple, nor too complex. Only in this class could be observe patterns to move, to interact with each other
as well as the effect of small changes to be localized to a certain region. By viewing such moving patterns as
bits of information being transmitted, stored and modified, Langton (1990) showed that the optimal conditions
for the support of computation is found at the phase transition between the non-chaotic regime and the
chaotic regime. In fact, Cook (2004) has proven that rule 110 is capable of universal computation, i.e. has the
same computational power as a (universal) Turing machine!

2-Dimensional CAs (Game of Life)

Each cell of this cellular automaton can be in either one of two states, called
“dead” or “alive”, and obeys the following very simple set of rules:

Loneliness:
If a living cell has less than two neighbors, then it dies.

Overcrowding:
If a living cell has more than three neighbors, then it dies.

Reproduction:
If a dead cell has exactly three living neighbors, then it comes to life.

Stasis:
Otherwise, a cell stays as it is.

Many different types of patterns occur in the Game of Life, including static patterns (“still lifes”), repeating
patterns (“oscillators”), and patterns that repeat themselves after a fixed sequence of states and translate
themselves across the board (“spaceships”).

Simple Patterns: Many different types of patterns occur in the Game of Life, including static patterns (“still
lifes”), repeating patterns (“oscillators”), and patterns that repeat themselves after a fixed sequence of states
and translate themselves across the board (“spaceships”). Common examples of these three classes are
illustrated in Figure 6.22.

=0 =1 t=0 t=1 1=2 =3 t=4

(a) (b) (c)

Figure 6.22: Simple patterns occurring in the Game of Life. (a) Still lifes. (b) A
2-periodic oscillator. (c) A “glider”, one of the simplest spaceships.

Growing Patterns: Patterns called “Methuselahs” can evolve for long periods before disappear or stabilize (see
Figure 6.23). Conway originally conjectured that no pattern can grow indefinitely — i.e., that for any initial
configuration with a finite number of living cells, the population cannot grow beyond some finite upper limit. In
the game’s original appearance in “Mathematical Games”, Conway offered a $50 (!) prize to the first person
who could prove or disprove the conjecture before the end of 1970. The prize was won in November of the
same year by a team from the Massachusetts Institute of Technology, led by Bill Gosper; the “Gosper gun”
shown in Figure 6.24 produces a glider every 30 generation. This first glider gun is still the smallest one known.
|
[[[[]] -Ill

(a) (b)

Figure 6.23: Simple patterns that grow. (a) “Diehard” is a pattern that eventually
disappears after 130 generations, or steps. (b) “Acorn” takes 5206 generations to
generate at least 25 gliders and stabilise as many oscillators.

. lj::l'g:"

nE -
L1 G 1
[nm 1]
1] m - EE o
N E mEm (|
L E
[T -
(a) (b)

Figure 6.24: The “Gosper™ glider gun. (a) Initial configuration. (b) The glider
gun in action.

Universal Computation: Looking at the Game of Life from a computational point of view, gliders can be seen as
bits of information being transmitted, glider guns as input to the system, and other static objects as providing
the structure for the computation. For instance, Figure 6.25 illustrates how any logical primitive can be
implemented in the Game of Life.

More generally, it has been shown that the Game of Life is Turing complete, i.e. that it can compute anything
that a universal Turing machine can compute. Furthermore, a pattern can contain a collection of guns that
combine to construct new objects, including copies of the original pattern. A “universal constructor” can be
built which contains a Turing complete computer, and which can build many types of complex objects —
including more copies of itself!

Figure 6.25: Logical operations implemented in the Game of Life. The streams
of gliders represent the input of the system, and the presence or absence of glider
at the very bottom the binary output of the logical operation.

Chapter 7: Dynamical Systems (nur slides kopiert, Skript war zu schwierig)

Dynamical Systems

* A dynamical system is a 3-tuple (T,M,®), where

» Tis the set of values the time parameter can take (for
mathematical purists: an additively written monoid),

» M is a set containing the possible states (the state space)
of the dynamical systems

- ®is a function with

®0,x)=x
D(1,,D(1,,x)) =D(1, +1,,x)
Time: Flows and Maps

Q. TxM-—->M

Basically (T,M,®) produces a series of maps of M onto
itself.

Given an initial condition x, = x(0), a deterministic trajectory
x(t), t € T is produced by (T,M,®).

Note that for our purposes, T is either a interval in the real
numbers [or the natural numbers 0. In the former case,
time is continuous and one speaks of a flow, in the latter
discrete and one calls it a map

Dynamical System = Time + States + Determinism

How Is the Dynamics Described?

Very many dynamical systems can be expressed as sets of
ordinary differential equations (ODE):

M O

')'Cn = f;q('xlr";xn;j‘l;“':/‘i’m)
Discrete systems are given by iterations:
xn = f(xn—l7xn—27“‘7xn—m)

The flows and maps are global, but here, their description is
local. The big technical question is how to ,integrate” a local
description in order to get a global flow.

A Flow in Two Dimensions

i A set of initial
conditions, here a circle
is transported through M
by a flow.

The flow deforms the
initial region, but for
each and every initial
condition we have a
trajectory.

Initial
conditions

If the system dissipates
energy, these areas will
shrink.

=<V

Flow in a two-
dimensional system

ODE, lterations, Development

* |terations and systems of ODE doesn’t describe ¢ in the
sense of a blue print.

* They are rather developmental descriptions for the
construction of ¢.

Visualization of a Two-Dimensional Flow

Van der Pool: dx/dt = y; dy/dt = —(x*2-1)y —x

- A 8|
\ o |
IR ER AR / WYY Y Y ¥
\ \ YE ALA e NE A LY
| .)
AR Sl 4 e T R
| - \ '
{1 Ny o SRR
PINRER R R ” A VXYY g
) P AT AN AR
b | . i - \AIRARE
| \ v — | |
Y XY AN AL AU ERR R R [
| £ N\ RS —
1 A N X =Y
TR / T3 I ey
y IS AL
aaTETES 7~ AR
0 SRR T LR B prlell e . 2
| th K b b =\ = x _1 _x
A‘Agkn“‘l A IS A N N) -
{1y e, AL F |
\ A~ Ay \
RS S AN N ke hakkadd &
N 4 / \
| L LN
=20 bk bk A WS AAhda
PN OMT
- WA |
t W\ g
AAA‘AL;\Q~“) - AL b A bR
| P Il
\ ~ “ A 1
LI R N LRI
4 ‘ ST ‘

Attractors: Informal Definitions

After sufficiently long time, many systems tend to attain
only a very small subset of their potential states. This small
subset attracts all other points.

Van der Pool: dx/dt =y dy/dit = ~(x2-1)y —x

[/ Zeichnen Sie
die Basins of
Attraction!

05} 5

|
/N
y 0.0 i{\L\(/ H///i‘i

e) o .\
—0.5) — N\
o —
/) /x\\\\‘\-——;f
/N \\\E::/;f// \§\
=1.0 NN/ N
10 -05 00 05 10

X
Basin of Attraction in Two Dimensions

1.0 \\:‘\S\\B/é{;:;;\\%%é ‘é\grs::]ingfn vier

— i Attraii
Wﬁ\\\\\ dentiizieren!
{

0.5 ==
/(/'7//1)

/
W W,&)
S ’/i::;\%\\ W
\\//4

-05 —’}’/4 e ey

ZZ, \‘Q‘Q::g;’\\:{‘:
ol IN==7/I\%

-10 -05 0.0 0.5 1.0
X

y 0.0

Limit Cycles

- Systems with two or moré dimensions need not to end up in an point
attractor.

< They may eventually enter an orbit that goes on forever.
= Such an orbit is called a limit cycle.

Grenzzyklen

Tz | e
L N A .
| — ==
2 il
RS iy |
v off mr ’\TH (| /l.l} l\l ‘ Van der Pol - Oszillator ‘
LT \\‘\ \‘/ /2 Wi
7 HH\\ \\ /. \\\\M\ Grenzzyklus
\‘\\‘//,fif;r\ \ Trans?ente von Aussen
LA e
-4 -2 0 2 4

Strong and Weak Determinism

« Weak determinism: Identical initial conditions lead to
identical results.

» Strong determinism: Weak determinism holds and
additionally, similar conditions lead to similar results.

« Systems subject to strong determinism are easy to
handle, e.g. bicycles, tin openers, computers.

« Systems subject to weak determinism are deterministic,
but if one doesn't know exactly the initial conditions, the
final outcome might not be predictable.

Chaos — Informal Definition

+ Roughly said, systems that are subject to weak but not
to strong determinism are called chaotic.

» Note that whether or not a system behaves in a chaotic
manner may depend on some parameters. It may also
be the case that the system is only chaotic for some
portions of the space of potential initial conditions.

Chaos — Geometrical Perspective

System with three fixed points.
Initial conditions .

I,

Strong .
causality
implies usually No CHAOS!

for almost all
points:

Means, if X goes green, so do his Despite the fact that the fate of X is determined and
immediate buddies. This is true for leads to the ,green* fixed point, one finds in all, arbitrary
almost all X's, except some borderliners. small, neighborhoods of X points going to another fixed

If X lifes in a n-dim space, the point.
borderliners life on n-1 dim subsets.

Case Study: Logistic Map

* The logistic map is a very simple ecological model.
» Two assumption:
» Sexual reproduction = ~ population size

» Competition for food =»~ prob. of meeting a potential
competitor = ~ (population size)?.

xn+l = rxn(l_xn)
x,: Population size at discrete time n
r . Parameter (after normalization)

Logistic Map Visualized

Logistic Map: r = 3
1-)6n+1 X,1=X

0.8 (X3,X4) (X4,X

0.6

0.4} (x4,x

0.2 (X5,X5)

0.0 Xn
0.0 0.2 04 0.6 0.8 1.0

Behavior of the Logistic Map

Logistic Map: r = 2 Logistic Map: r =2
X1 X,

1.0 10]
08 038,
06
0.6
04
0.4 -
02 00 0 20 30 40 50"

For small r: convergence
to a single point.

Behavior of the Logistic Map

Logistic Map: r = 3.1

Xn+1
1.0 Xo,1= 0.1, X 2=0.11
10/
0.8
08 REEAARERA]
06 s /vavvvw VWY
0.4 0.4 [
0.2] /
0.2 I
0.0 10 20 30 20 50"
0.0 X
0.0 0.2 0.4 0.6 0.8 1.0
For larger r: convergence to oscillation
between two points.
No dependence on initial conditions.
Behavior of the Logistic Map
Logistic Map: r = 3.51 Xo,1= 0.1, x02=0.11
1)81+1 16‘n
: o
0.8 08 V'f"
VULV
0 oof MUY
04 04 LR B I
0.2 0.2
080 0z o024 o5 o8 10"°% 0 20 30 40 50"

For even larger r: convergence to oscillation
between four points.
No dependence on initial conditions.

Behavior of the Logistic Map

Xna

Logistic Map: r = 3.562
1 X

Xo,1= 0.1, X02=0.11

‘IWMvavMW/VW[VW

For even larger r: convergence to oscillation
between eight points.

No important dependence on initial conditions.
Actually, we observe a phase shift.

Behavior of the Logistic Map

Above critical value of r: Transition to chaotic
behavior.

Behavior of the Logistic Map

iw‘x LK v"ﬂ w""“u U
W 1

Inltlal cond|t|ons are very crltlcal Arbltrary
small deviations eventually take large effect.
Logistic Map: Bifurcation Diagram

Bifurcation Diagram of Logistic Map
Xstat

1.0 — =15

| F
80 02 04 o6 05 10|

0.6

0.4

0.2

Logistic Map: Bifurcation Diagram

Bifurcation Diagram of Logistic Map

3.0 3.2 3.4 3.6 3.8 4.0
Case Study: Lorenz Attractor

» E. Lorenz aspired a model for some meteorological
phenomena (convection).

» He observed critical dependence on initial condititions.
« First ,practical“ observation of weak determinism.

x=0(y—x)
o: Prandtl number . o
p: Rayleigh number y=x(p—z)-y
Z=Xxy— Dz
Lorenz Attractor
o: 10, 3: 8/3, p: 28
. /29/ - ~ Fractal dimension: 2.06
 i=o-v)
y=x(p=2)=y

g=y— Bz
Lorenz Attractor
yit}

Lorenz Attractor: Butterfly Effect

Butterfly Effect, yo1=3.5, yo,=3.6 Butterfly Effect, yo4=3.5, yo.2=3.50001

Butterfly Effect, yo.1=3.5, y5.2=3.500000001

y Tiny variation have large effects:
Orders of magnitude in precision
lead only to linear increase of
correctly predicted time!

The Lorenz system is strictly
deterministic, but in various
senses unpredictable.

Determinism and Non-Determinism

+ Abstractly, the trajectories of the Lorenz — system are
given in a unique way for each possible set of initial
conditions =» the system is deterministic.

* The system may be chaotic: Given that we can’t
measure initial conditions to any degree of precision and
given that numerical computations are subject to random
errors, we can’t calculate the long term behavior of the
system. But this is a problem of our computation, not
of the system itself. There is no sudden emergence of
non-determinism.

Dynamical Systems — State of the Art

Number of variables
n=1 n=2 n=3 n>>1 IContinuum
|Growth, decay, [Oscillations Chaos ICollective Waves and
lequilibrium lphenomena lpatterns
Populations Mass and springCivil and ISolid state Wave equation
=[RC - circuits ~ RCL-circuit [lectrical physics Elasticity
§ Radioactive p-body problem ["9!N€ENng Molecular Hydrodynamics
= [decay [dynamics
Fixed points Pendulum [Strange INon-equilibrium [QFT
Bifurcations |Anharmonic fttractors statistical mech.|garthquakes
lOverdamped (oscillator B-body problem [Lasers Reaction-
Zlsystems Limit cycles IChemical Heart cells diffusion
i Logistic map [Biological osc. [<inetics INeural networks[systems.
3 P =
o Predator-prey Fractals ystem [Fibrillation
B Non-linear lterated maps [Eco-systems [Epilepsy
electronics Practical uses [Turbulent flow
lof chaos IClimate

Relation to other IT Systems

Fixed points Limit cycles, Closed |Chaos,

orbits, regular trange attractors,
behavior icomplex behavior

Systems of differential equations

Dim 1 Yes No No

Dim 2 Yes Yes No

Dim >3 |Yes Yes Yes

Cellular Automata

Class 1 Yes No No

Class 2 No Yes No

Class 3 No No Chaos

Class 4 Yes (?) Yes (?) Complex beh.

IAutomata

FSA Yes Yes No

™ lYes (Halting) [Yes Yes

Dynamical Systems and Information

Dynamical systems can switch between different states.

A dynamical system together with an initial condition can be

understood as a (maybe compressed) representation of a

sequence.
yit)

20

10000001010111......

1 LAl

-

(=}

-20

Wiy

Chapter 8: Fractals e Fractals refer to structures displaying self-similarity on different scales.

Measuring the Length of Coastlines

=>the border of a country does not necessarily have a “true” length, but that the measured length of a border
depends on the unit of measurement.

Richardson demonstrated that the measured length of coastlines and other natural features appears to
increase without limit as the unit of measurement is made smaller. This is known as the Richardson effect.

= — =

(a) (b) (c)

Figure 8.2: Measuring the length of the coast of Britain with different units of
measurement. Notice that the smaller the ruler, the bigger the result.

Fractional Dimension
=>how to measure "normal objects"

one-dimensional object:

(a)

n R

(b)

N

(¢)

(d)

Figure 8.4: Measuring the size of a one-dimensional object, the line shown in (a),
using measuring units of different sizes. Reducing the size of the measuring unit
by a (linear) factor of 2 requires approximately twice as many units to cover the
line.

If a represents the size of the measuring unit (i.e. the side length of the square)
and NN represents the number of measuring units needed to cover the line, we have
the relation:

N=xg-— (8.1)

with a particular constant ¢y.

The plot of this relation in log-log scales in shown in Figure 8.5(a). In partic-
ular, the measured length L of the line, defined as L = N - @ converges to a fixed
value as a gets smaller, since we have:

two-dimensional object:

Let us now measure the size of a two-dimensional object, the surface shown in
the top left corner of Figure 8.6, using again the same square measuring unit.
This time, reducing the size of the measuring unit by a linear factor of 2 requires
approximately four times as many units to cover the surface. We thus have now

the relation:
2
. 1
Ny () (8.2)
a
with a particular constant co.

The plot of this relation in log-log scales in shown in Figure 8.7(a). The mea-
sured area A of the surface. defined as A = N -a? converges again to a fixed value
as a gets smaller:

D-dimensional object:
Equations 8.1 and 8.2 can be summarized, in the general case of a D-dimensional

object, as:
1\
N=me- () (8.3)
a

Applying the log to both sides and taking the limit where a get infinitesimally
small, we can rewrite this equation as:

log(N
D= lim B
20 Tog(T)

@

(8.4)

Another way of looking at this equation is that the slope of N as function of
a in a log-log plot gives us —D. This relation is illustrated in Figure 8.8, which
combines together the two plots of Figures 8.5(a) and 8.7(a).

fractal:

Let us consider a [ractal figure that we’ve already encountered in the previous
chapter — the Sierpinsky gasket:

ﬁ%ﬁa AM%\

A2 4045 £2

Let us now measure its surface, using again squares as measuring units. Fig-
ure 8.9 shows how the number of measuring units required to cover the fractal
pattern increases as the size of the measuring unit decreases.

ok A

Figure 8.9: Number of measuring units needed Lo cover objects as function of
the size of the measuring unit. The slope (with the reverse sign) gives us the
dimension of the object being measured.

Let us consider a serie of measuring units whose size are each time divided
by two: a,, = (%)n From Figure 8.9, we see that the number of measuring units
needed to cover the pattern will each time increase by three: N = 3™,

The dimension of this pattern is thus:

log(V log(3™
D =l 22y, oG
a—0 log(a n—oo log(zﬂ)

)

_ lim nlog(S) _ lim log(3)
(
L.

n—00 nlog 2) n—00 10g(2)
log(3) _
log(2)

The dimension is not an integer anymore, but is fractional. In a sense, the
Sierpinsky gasket is neither one-dimensional (as a line) nor two-dimensional (as
a surface), but somewhere in between.

Note also that the actual measures (such as length or surface) of patterns with
fractional dimenions do not converge to fixed (positive) value anymore. For in-
stance, the Sierpinsky gasket has in fact no area, since:

585

A = N.&°

: 2
lim N, - a,

n—oo

il 2

s (‘2”)
3 n

= Bm [2) =@
nﬂgo(at)

Furthermore, the measured length of the border of the Sierpinsky gasket di-

verges to infinity — similar to the lengths of the coastlines measured by Richard-
son!

L = N-a

= lim N, -a,

n—00

== fj 3\"
= Moly) —=

Examples of Fractals

the Cantor Set

The so-called Cantor ser is one of the simplest fractals. It can be constructed as
follows (see Figure §.10):

1. Start with the interval [0, 1] and color it black.

2. Take out the middle third of it. yet leaving the endpoints. You end up with
two intervals: [0,] U [2,1].

3. From each remaining interval take out the (open) middle third and repeat
this procedure for ever.

This pattern has a number of remarkable and deep properties.

Figure 8.10: The first 7 iterations of the Cantor set.
properties:
What is the length of the Cantor set? After n steps, we have 2 segments, each of
which has a length of 3%1 The length of the Cantor set is thus zero:

L=1m > =0
im o

Even though the Cantor set has a length of zero, it still contains some points.
The “endpoints” of each interval are never removed, so the Cantor set contains an
infinite number of points.

It may appear that only the endpoints are left, but that is not the case either.
The number % for example, is in the bottom third, so it is not removed at the first
step. It is in the top third of the bottom third, and is in the bottom third of that,
and in the top third of that, and in the bottom third of that, and so on ad infinitum
— alternating between top third and bottom third. Since it is never in one of the
middle thirds, it is never removed, and yet it is also not one of the endpoints of
any middle third.

In fact, it can be shown that the Cantor set is uncountable — there are as many
points in the Cantor set as there are in the original interval [0, 1]!

the Koch Curve

The Koch curve is one of the earliest fractal curves to have been described. Each
stage is constructed in 3 steps by starting with a line segment and then recursively
altering each line segment as follows (see Figure 8.11):

1. Divide the line segment into three segments of equal length.

2. Draw an equilateral triangle that has the middle segment {rom step one as
its base.

3. Remove the line segment that is the base of the triangle from step 2.

The Koch snowflake, shown in Figure 8.12, is the same as the Koch curve,
except that it starts with an equilateral triangle.

/\

(a) Step 0 (b) Step 1
(c) Step 2 (d) Step 4
"y
g Bam,

F s

(e) The Koch curve

Figure 8.11: Recursive construction of the Koch curve.

L-Systems (Lindenmayer Systems)

=> essentially a formal grammar
With the advent of informatics, L-systems have not only become popular to model the growth processes of
plant development, but also to graphically generate the morphology of complex organisms.

e
e

s

Figure 8.15: Fractal trees and plants created using a Lindenmayer system.

L-systems consist essentially of rewrite rules that are applied iteratively to some initial string of symbols. The
recursive nature of the L-system rules leads to self-similarity and thereby to fractal-like forms, which are easy to
describe with an L-system.

Note that the rules of the L-system grammar are applied iteratively starting from the initial state. During each
iteration, as many rules as possible are applied simultaneously. This is the distinguishing feature between an L-
system and the formal language generated by a grammar.

Example 8.1. The following grammar was Lindenmayer’s original L-system for
modelling the growth of algae:

e Variables: A. B
e Constants: (none)
e Axiom: A

e Production rules:
A — AB
B — A
This produces:
Step 0: A
Step 1: AB
Step 2: ABA
Step 3: ABAAEB
Stepd: ABAABABA
Step 5: ABAABABAABAAB
Step 6: ABAABABAABAABABAABABA
Step7: ABAABABAABAABABAABABAABAABABAABAAB

Turtle Graphics

=> interprets L-Systems and draws it

Command

Turtle Action

F
|

draw forward (for a fixed length)

draw forward (for a length computed from the execution
depth)

turn right (by a fixed angle)

turn left (by a fixed angle)

save the turtle’s current position and angle for later use
restore the turtle’s position and angle saved during the cor-
responding | command

Example 8.2.

e Axiom:

Table 8.1: Turtle graphics commands.

The following L-system:

F

e Production rule: F — F[-F |[4+F]

¢ Angle: 20

produces the following stages of the draw process:

Development Models

=>"extended Turtle-Graphics" on 3 Dimensions, additional information can be included into the production
rules, including delay mechanisms, influence of environmental factors or stochastic elements — so that not all

the plants look the same.

Figure 8.16: Simulated development of plants grown with more complex L-
systems.

The Mandelbrot Set

In this section, wee will see once again how fractals are not necessarily re-

lated to recursive property of the system, but rather surprisingly closely related to
decidability and chaos.

“Will it diverge?”
Let us consider the sequence of numbers defined by the following equation:
Ty = ;L'? +c (8.5)

with zp = 0 and a given constant c.

The question is: for what ¢ will the serie diverge to infinity?

with real numbers:

| (a) ¢ ; 0.4 | (b) ¢ ; 0.255
oy (C; C;O‘al ey Seeeggy ’(d),cl’ 7;5 R
L) i "';f‘r:mcjl:ﬁ'*“ miiliﬂ.uni

Figure 8.17: Evolution of the serie defined by Eq. 8.5 for different values of ¢.

with complex numbers:

Im|¢]
1

Figure 8.18: The Mandelbrot set.

Chapter 9: Graphs and Networks

