
Formal Methöds II Sömmary 

Chapter 2: Formal Languages 

Natural Language (english) Formal Language (c++) 

+ High expressiveness 

+ No extra learning 

− Ambiguity 

− Vagueness 

− Longish style 

− Consistency hard to check 

+ Well-defined syntax 

+ Unambiguous semantics 

+ Can be processed by a computer 

+ Large problems can be solved 

− High learning effort 

− Limited expressiveness 

− Low acceptance 

 

Syntax: 

This figure illustrates how a tree representation is a convenient 

way of representing the syntax structure of a single phrase:

 

Semantics: 

The reason is that verifying the semantics of a phrase is almost impossible, 

whereas verifying its syntax is much simpler. To draw a comparison with a formal 

language, each compiler can verify whether a C++ code has a correct syntax (if 

so, it can be compiled; otherwise, the compiler will generate an error). But no 

computer will ever be able to verify that the code corresponds to a meaningful 

program! 

Grammar: 

One possible set of production rules – i.e. a generative grammar –corresponding 

to our example is the following (“ | ” stands for “or”): 

      

  



recursion:  =>   

 

 



 

 

A sequence of rule applications is called a derivation. 

 

  



   

regular grammars 

 

=> append the symbols at either the left or the right during derivation 

=> a regular language is a language that can be generated by a regular grammar 

 

regular expressions 

Regular languages are typically described by regular expressions:

 



context free languages 

Context-free languages include most programming languages, and is thus one the central category in the theory 

of formal languages. 

 

 
 

Backus-Naur Forms (BNF) 

 

 
  



grammar tree: 

A grammar tree is a tree where each link corresponds to the application of one particular production rule, and 

where the leafs represent the elements of the language. 

 
parsing: 

Parsing (also referred more formally to as “syntactic analysis”) is the process of analyzing a sequence of 

symbols (or more generally tokens) to determine its grammatical structure with respect to a given formal 

grammar. 

 
ambiguity: 

A grammar is said to be ambiguous if the language it generates contains some string that have more than one 

possible parse tree. 

example: “2−3−4” => (2 − 3) − 4 = −5 or 2 − (3 − 4) = 3 

 
=> leftmost-derivation and rightmost-derivation 

make grammar unambiguous (example "2-3*4): 

=>  



context sensitive languages 

 

 

unrestricted grammar: 

 

Chomsky Hierarchy 

 

 

  



undecidable problems 

 

 

  



Chapter 3 Automata Theory 

computation 

"Does a particular string w belongs to a given language L or not?" 

 

 

Finite State Automata 

A finite state automaton (plural: finite state automata) is an abstract machine that 

successively reads each symbols of the input string, and changes its state according 

to a particular control mechanism. If the machine, after reading the last symbol 

of the input string, is in one of a set of particular states, then the machine is said 

to accept the input string. It can be illustrated as follows: 

 

 

      

 



 

Nondeterministic Finite Automata 

 

 

 

 

regular languages 

 



The “Pumping Lemma” for Regular Languages 

 

proof is in the script... not really important 

examples for applications of finite state automata: 

 

Push-Down Automata 

=> In general the same like FSA, but with a external memory (stack) to remember states: 

 

  



Parser Generator 

 

 

 

Compiler Compilers 

 



 

 

 

=> ANTLR better than yacc, because it provides very powerful framework for constructing recognizers, 

interpreters, compilers and translators from grammatical description containing actions, but also generates a 

very transparent code. 

  



Turing Machines 

 

 

 

 

Recursively Enumerable Languages 

 

Linear Bounded Turing Machines 

The automaton that corresponds to context-sensitive grammars (i.e. that can recognize elements of context-

sensitive languages) are so-called linear bounded Turing machines. Such a machine is like a Turing machine, but 

with one restriction: the length of the tape is only k · n cells, where n is the length of the input, and k a constant 

associated with the machine. 

  



Universal Turing Machines 

 

 
 

Multitape Turing Machines 

=> important, because it is easier to see how a multitape Turing machine can simulate real computers, 

compared with a single-tape model. 

 

Nondeterministic Turing Machines 

=> the NTM are to standard TM what NFA are to DFA 

 

The P = NP Problem 

=> how the number of steps to perform a computation grows with input increasing length 

 

 



 

The Church-Turing Thesis 

 

The Halting Problem 

It is nevertheless possible to formally define functions that are not computable. One of the best known 

example is the halting problem: given the code of a Turing machine as well as its input, decide whether the 

machine will halt at some point or loop forever. 

 

The Chomsky Hierarchy Revisited 

 

 

 
  



Chapter 4: Markov Processes 

 

=> a Markov process is a stochastic extension of a FSA. In a Markov process, state transitions are probabilistic, 

and there is -in contrast to a FSA- no input to the system. The system is only in one state at each time step. 

 

Process Diagrams 

 

 
 

Formal Definitions 

 

 
 

transition matrix 

 

 

 



 
 

Stationary Distribution 

 

=> after certain time the probability distribution converges towards a stationary distribution 

 

 

 
  



Hidden Markov Models 

 

=> Markov process with unknown parameters. In HMM states are not visible like in MM => the observer sees 

an observable (or output) token. Each hidden state has a probability distribution, called 

emission probability, over the possible observable tokens. 

 

 
 

 

 



 

 
 

Applications of Hidden Markov models include text recognition, predictive text input systems of portable 

devices and speech-to-text software. 

 

Viterbi Algorithm => I don't think that this is part of the relevant stuff... for a good summary take the script. 

 

The Viterbi algorithm is an efficient algorithm that finds the most likely 

sequence of hidden states given a sequence of observations. 

  



Chapter 5: Logic 

 

Definition of a Formal System 

 

 
 

Propositional Logic 

 

language 

 

 

 

 



 

 
 

Semantics 

 

 

 
  



Formal System 

 

axioms 

 

 

 
 

Inference Rules 

 

Propositional logic has a single inference rule: Modus ponens. 

 
 

proofs 

 

 

 
 

theorems 

 



completeness 

 

 
 

Normal Forms of Propositional Formulas 

 

Every propositional formula can be expressed in two standard or normal forms: 

 

 
 

Predicate Calculus (First Order Logic) 

 

language 

 

 

 



 

 
 

Semantics 

 

 

 



Formal System 

 

 

 

 
 

Rules of Manipulation 

 

 
  



Prenex normal form 

 

is the normal form for predicate calculus (like CNF and DNF for propositional calculus) 

 

 
  



Chapter 6: Cellular Automata 

 

Cell Lattice 

 

 
 

Local Rules 

 

 
 

Initial and Boundary Condition 

 

initial conditions: 

- seed (all cells are in the state 0 except one) 

- random (initial state of each state is chosen randomly) 

 

boundary conditions: 

- fixed (It is assumed that there are “invisible” cells next to the border-cells which are in a given predefined 

state) 

- cyclic (It is assumed that the cells on the edge are neighbors of the cells on the opposite edge as depicted) 

 

  



One-Dimensional Cellular Automata 

 

 

 

 
 

Simple Patterns 

 

 



Fractals 

 

 
 

 
 

Chaos 

 

=> neither simple nor fractal pattern 

 

 
 

Edge of Chaos 

 

=> between chaos and regularity 

 

 
 

  



The Four Classes of Cellular Automata (by Wolfram) 

 

 

 

 

 

 

 



 

 
 

Sensitivity to Initial Conditions 

 

 

 



Langton's Landa-Parameter 

 

=> If most of the entries in a rule table of a cellular automata are zero, then the pattern will most probably 

always converge to the empty configuration. The more entries in the rule table are different from zero, higher 

is the probability of obtaining complex or chaotic patterns. 

 

 N = number of entries in the rule table of a CA, n0 = number of zeros in the rule table 

 

 
 

Computation at the Edge of Chaos 

 

We have seen so far the cellular automata belonging to class 4 have the interesting property of being neither 

too simple, nor too complex. Only in this class could be observe patterns to move, to interact with each other 

as well as the effect of small changes to be localized to a certain region. By viewing such moving patterns as 

bits of information being transmitted, stored and modified, Langton (1990) showed that the optimal conditions 

for the support of computation is found at the phase transition between the non-chaotic regime and the 

chaotic regime. In fact, Cook (2004) has proven that rule 110 is capable of universal computation, i.e. has the 

same computational power as a (universal) Turing machine! 

 

2-Dimensional CAs (Game of Life) 

 

 
 

Many different types of patterns occur in the Game of Life, including static patterns (“still lifes”), repeating 

patterns (“oscillators”), and patterns that repeat themselves after a fixed sequence of states and translate 

themselves across the board (“spaceships”). 

  



Simple Patterns: Many different types of patterns occur in the Game of Life, including static patterns (“still 

lifes”), repeating patterns (“oscillators”), and patterns that repeat themselves after a fixed sequence of states 

and translate themselves across the board (“spaceships”). Common examples of these three classes are 

illustrated in Figure 6.22. 

 
 

Growing Patterns: Patterns called “Methuselahs” can evolve for long periods before disappear or stabilize (see 

Figure 6.23). Conway originally conjectured that no pattern can grow indefinitely – i.e., that for any initial 

configuration with a finite number of living cells, the population cannot grow beyond some finite upper limit. In 

the game’s original appearance in “Mathematical Games”, Conway offered a $50 (!) prize to the first person 

who could prove or disprove the conjecture before the end of 1970. The prize was won in November of the 

same year by a team from the Massachusetts Institute of Technology, led by Bill Gosper; the “Gosper gun” 

shown in Figure 6.24 produces a glider every 30 generation. This first glider gun is still the smallest one known. 

 
 

 
 

Universal Computation: Looking at the Game of Life from a computational point of view, gliders can be seen as 

bits of information being transmitted, glider guns as input to the system, and other static objects as providing 

the structure for the computation. For instance, Figure 6.25 illustrates how any logical primitive can be 

implemented in the Game of Life. 

More generally, it has been shown that the Game of Life is Turing complete, i.e. that it can compute anything 

that a universal Turing machine can compute. Furthermore, a pattern can contain a collection of guns that 

combine to construct new objects, including copies of the original pattern. A “universal constructor” can be 

built which contains a Turing complete computer, and which can build many types of complex objects – 

including more copies of itself! 



 
  



Chapter 7: Dynamical Systems (nur slides kopiert, Skript war zu schwierig) 

 

 



 
 



 















 
  



Chapter 8: Fractals                      

 

Measuring the Length of Coastlines 

 

=> the border of a country does not necessarily have a “true” length, but that the measured length of a border 

depends on the unit of measurement. 

Richardson demonstrated that the measured length of coastlines and other natural features appears to 

increase without limit as the unit of measurement is made smaller. This is known as the Richardson effect. 

 
 

Fractional Dimension 

 

=> how to measure "normal objects" 

 

one-dimensional object: 

 



 
two-dimensional object: 

 
D-dimensional object: 

 
  



fractal: 

 

 

 



Examples of Fractals 

 

the Cantor Set 

 

 
properties: 

 
 

the Koch Curve 

 

 



L-Systems (Lindenmayer Systems) 

 

=> essentially a formal grammar 

With the advent of informatics, L-systems have not only become popular to model the growth processes of 

plant development, but also to graphically generate the morphology of complex organisms. 

 
 

L-systems consist essentially of rewrite rules that are applied iteratively to some initial string of symbols. The 

recursive nature of the L-system rules leads to self-similarity and thereby to fractal-like forms, which are easy to 

describe with an L-system. 

Note that the rules of the L-system grammar are applied iteratively starting from the initial state. During each 

iteration, as many rules as possible are applied simultaneously. This is the distinguishing feature between an L-

system and the formal language generated by a grammar. 

 
  



Turtle Graphics 

 

=> interprets L-Systems and draws it 

 

 
 

Development Models 

 

=> "extended Turtle-Graphics" on 3 Dimensions, additional information can be included into the production 

rules, including delay mechanisms, influence of environmental factors or stochastic elements – so that not all 

the plants look the same. 

 



The Mandelbrot Set 

 

 
 

with real numbers: 

 
  



with complex numbers: 

 
  



Chapter 9: Graphs and Networks 

 

 


