
Formal Methöds II Sömmary

Chapter 2: Formal Languages

Natural Language (english) Formal Language (c++)

+ High expressiveness

+ No extra learning

− Ambiguity

− Vagueness

− Longish style

− Consistency hard to check

+ Well-defined syntax

+ Unambiguous semantics

+ Can be processed by a computer

+ Large problems can be solved

− High learning effort

− Limited expressiveness

− Low acceptance

Syntax:

This figure illustrates how a tree representation is a convenient

way of representing the syntax structure of a single phrase:

Semantics:

The reason is that verifying the semantics of a phrase is almost impossible,

whereas verifying its syntax is much simpler. To draw a comparison with a formal

language, each compiler can verify whether a C++ code has a correct syntax (if

so, it can be compiled; otherwise, the compiler will generate an error). But no

computer will ever be able to verify that the code corresponds to a meaningful

program!

Grammar:

One possible set of production rules – i.e. a generative grammar –corresponding

to our example is the following (“ | ” stands for “or”):

recursion: =>

A sequence of rule applications is called a derivation.

regular grammars

=> append the symbols at either the left or the right during derivation

=> a regular language is a language that can be generated by a regular grammar

regular expressions

Regular languages are typically described by regular expressions:

context free languages

Context-free languages include most programming languages, and is thus one the central category in the theory

of formal languages.

Backus-Naur Forms (BNF)

grammar tree:

A grammar tree is a tree where each link corresponds to the application of one particular production rule, and

where the leafs represent the elements of the language.

parsing:

Parsing (also referred more formally to as “syntactic analysis”) is the process of analyzing a sequence of

symbols (or more generally tokens) to determine its grammatical structure with respect to a given formal

grammar.

ambiguity:

A grammar is said to be ambiguous if the language it generates contains some string that have more than one

possible parse tree.

example: “2−3−4” => (2 − 3) − 4 = −5 or 2 − (3 − 4) = 3

=> leftmost-derivation and rightmost-derivation

make grammar unambiguous (example "2-3*4):

=>

context sensitive languages

unrestricted grammar:

Chomsky Hierarchy

undecidable problems

Chapter 3 Automata Theory

computation

"Does a particular string w belongs to a given language L or not?"

Finite State Automata

A finite state automaton (plural: finite state automata) is an abstract machine that

successively reads each symbols of the input string, and changes its state according

to a particular control mechanism. If the machine, after reading the last symbol

of the input string, is in one of a set of particular states, then the machine is said

to accept the input string. It can be illustrated as follows:

Nondeterministic Finite Automata

regular languages

The “Pumping Lemma” for Regular Languages

proof is in the script... not really important

examples for applications of finite state automata:

Push-Down Automata

=> In general the same like FSA, but with a external memory (stack) to remember states:

Parser Generator

Compiler Compilers

=> ANTLR better than yacc, because it provides very powerful framework for constructing recognizers,

interpreters, compilers and translators from grammatical description containing actions, but also generates a

very transparent code.

Turing Machines

Recursively Enumerable Languages

Linear Bounded Turing Machines

The automaton that corresponds to context-sensitive grammars (i.e. that can recognize elements of context-

sensitive languages) are so-called linear bounded Turing machines. Such a machine is like a Turing machine, but

with one restriction: the length of the tape is only k · n cells, where n is the length of the input, and k a constant

associated with the machine.

Universal Turing Machines

Multitape Turing Machines

=> important, because it is easier to see how a multitape Turing machine can simulate real computers,

compared with a single-tape model.

Nondeterministic Turing Machines

=> the NTM are to standard TM what NFA are to DFA

The P = NP Problem

=> how the number of steps to perform a computation grows with input increasing length

The Church-Turing Thesis

The Halting Problem

It is nevertheless possible to formally define functions that are not computable. One of the best known

example is the halting problem: given the code of a Turing machine as well as its input, decide whether the

machine will halt at some point or loop forever.

The Chomsky Hierarchy Revisited

Chapter 4: Markov Processes

=> a Markov process is a stochastic extension of a FSA. In a Markov process, state transitions are probabilistic,

and there is -in contrast to a FSA- no input to the system. The system is only in one state at each time step.

Process Diagrams

Formal Definitions

transition matrix

Stationary Distribution

=> after certain time the probability distribution converges towards a stationary distribution

Hidden Markov Models

=> Markov process with unknown parameters. In HMM states are not visible like in MM => the observer sees

an observable (or output) token. Each hidden state has a probability distribution, called

emission probability, over the possible observable tokens.

Applications of Hidden Markov models include text recognition, predictive text input systems of portable

devices and speech-to-text software.

Viterbi Algorithm => I don't think that this is part of the relevant stuff... for a good summary take the script.

The Viterbi algorithm is an efficient algorithm that finds the most likely

sequence of hidden states given a sequence of observations.

Chapter 5: Logic

Definition of a Formal System

Propositional Logic

language

Semantics

Formal System

axioms

Inference Rules

Propositional logic has a single inference rule: Modus ponens.

proofs

theorems

completeness

Normal Forms of Propositional Formulas

Every propositional formula can be expressed in two standard or normal forms:

Predicate Calculus (First Order Logic)

language

Semantics

Formal System

Rules of Manipulation

Prenex normal form

is the normal form for predicate calculus (like CNF and DNF for propositional calculus)

Chapter 6: Cellular Automata

Cell Lattice

Local Rules

Initial and Boundary Condition

initial conditions:

- seed (all cells are in the state 0 except one)

- random (initial state of each state is chosen randomly)

boundary conditions:

- fixed (It is assumed that there are “invisible” cells next to the border-cells which are in a given predefined

state)

- cyclic (It is assumed that the cells on the edge are neighbors of the cells on the opposite edge as depicted)

One-Dimensional Cellular Automata

Simple Patterns

Fractals

Chaos

=> neither simple nor fractal pattern

Edge of Chaos

=> between chaos and regularity

The Four Classes of Cellular Automata (by Wolfram)

Sensitivity to Initial Conditions

Langton's Landa-Parameter

=> If most of the entries in a rule table of a cellular automata are zero, then the pattern will most probably

always converge to the empty configuration. The more entries in the rule table are different from zero, higher

is the probability of obtaining complex or chaotic patterns.

 N = number of entries in the rule table of a CA, n0 = number of zeros in the rule table

Computation at the Edge of Chaos

We have seen so far the cellular automata belonging to class 4 have the interesting property of being neither

too simple, nor too complex. Only in this class could be observe patterns to move, to interact with each other

as well as the effect of small changes to be localized to a certain region. By viewing such moving patterns as

bits of information being transmitted, stored and modified, Langton (1990) showed that the optimal conditions

for the support of computation is found at the phase transition between the non-chaotic regime and the

chaotic regime. In fact, Cook (2004) has proven that rule 110 is capable of universal computation, i.e. has the

same computational power as a (universal) Turing machine!

2-Dimensional CAs (Game of Life)

Many different types of patterns occur in the Game of Life, including static patterns (“still lifes”), repeating

patterns (“oscillators”), and patterns that repeat themselves after a fixed sequence of states and translate

themselves across the board (“spaceships”).

Simple Patterns: Many different types of patterns occur in the Game of Life, including static patterns (“still

lifes”), repeating patterns (“oscillators”), and patterns that repeat themselves after a fixed sequence of states

and translate themselves across the board (“spaceships”). Common examples of these three classes are

illustrated in Figure 6.22.

Growing Patterns: Patterns called “Methuselahs” can evolve for long periods before disappear or stabilize (see

Figure 6.23). Conway originally conjectured that no pattern can grow indefinitely – i.e., that for any initial

configuration with a finite number of living cells, the population cannot grow beyond some finite upper limit. In

the game’s original appearance in “Mathematical Games”, Conway offered a $50 (!) prize to the first person

who could prove or disprove the conjecture before the end of 1970. The prize was won in November of the

same year by a team from the Massachusetts Institute of Technology, led by Bill Gosper; the “Gosper gun”

shown in Figure 6.24 produces a glider every 30 generation. This first glider gun is still the smallest one known.

Universal Computation: Looking at the Game of Life from a computational point of view, gliders can be seen as

bits of information being transmitted, glider guns as input to the system, and other static objects as providing

the structure for the computation. For instance, Figure 6.25 illustrates how any logical primitive can be

implemented in the Game of Life.

More generally, it has been shown that the Game of Life is Turing complete, i.e. that it can compute anything

that a universal Turing machine can compute. Furthermore, a pattern can contain a collection of guns that

combine to construct new objects, including copies of the original pattern. A “universal constructor” can be

built which contains a Turing complete computer, and which can build many types of complex objects –

including more copies of itself!

Chapter 7: Dynamical Systems (nur slides kopiert, Skript war zu schwierig)

Chapter 8: Fractals

Measuring the Length of Coastlines

=> the border of a country does not necessarily have a “true” length, but that the measured length of a border

depends on the unit of measurement.

Richardson demonstrated that the measured length of coastlines and other natural features appears to

increase without limit as the unit of measurement is made smaller. This is known as the Richardson effect.

Fractional Dimension

=> how to measure "normal objects"

one-dimensional object:

two-dimensional object:

D-dimensional object:

fractal:

Examples of Fractals

the Cantor Set

properties:

the Koch Curve

L-Systems (Lindenmayer Systems)

=> essentially a formal grammar

With the advent of informatics, L-systems have not only become popular to model the growth processes of

plant development, but also to graphically generate the morphology of complex organisms.

L-systems consist essentially of rewrite rules that are applied iteratively to some initial string of symbols. The

recursive nature of the L-system rules leads to self-similarity and thereby to fractal-like forms, which are easy to

describe with an L-system.

Note that the rules of the L-system grammar are applied iteratively starting from the initial state. During each

iteration, as many rules as possible are applied simultaneously. This is the distinguishing feature between an L-

system and the formal language generated by a grammar.

Turtle Graphics

=> interprets L-Systems and draws it

Development Models

=> "extended Turtle-Graphics" on 3 Dimensions, additional information can be included into the production

rules, including delay mechanisms, influence of environmental factors or stochastic elements – so that not all

the plants look the same.

The Mandelbrot Set

with real numbers:

with complex numbers:

Chapter 9: Graphs and Networks

