
Summary Distributed Systems HS 2009

Introduction
 In the early times, computers were standalone devices

 Today, networking has become a fundamental part of computers

 Definition of a distributed system:

o “A collection of independent computers that appears to its users as a single coherent

system.”

o Hardware: the machines are autonomous

o Software: the users think they deal with a single system

Challenges in Distributed Systems
 Transparency

o Make a set of computers appear as a single computer to the applications

o Different types of transparency:

 Access: hide differences in data representation and how a resource is

accessed

Problems: e.g. little endian representation vs. big endian representation or

case-sensitive file system (Linux) vs. not case-sensitive file system

(Windows)

 Location: hide where a resource is located

 Migration: hide that a resource may be moved to another location

 Relocation: hide that a resource may be moved to another location while in

use

 Replication: hide that there may exists multiple replicas of a given resource

 Concurrency: hide that a resource may be shared by several competitive

users

 Failure: hide the failure and recovery of a resource

 Persistence: hide whether a (software) resource is in memory or on disk

 Heterogeneity

o It is necessary to transparently address the differences in performance, capabilities,

network connectivity, etc.

o For instance in a PAN, connecting a desktop, a laptop, a PDA and a mobile phone,

one should transparently avoid to assign intensive tasks to the mobile phone.

 Failure handling

o Distributed Systems should be failure transparent  a failure on some components,

should not be fatal (or, ideally even detectable to the applications)

 Openness

o Well defined interfaces should be used. The interfaces should be described using the

Interface Definition Language (IDL)

o Modularity should be used so that an upgrade of one module doesn’t affect the rest

 Scalability

o 3 different dimensions of scalability: Size scalability, Geographic scalability and

Administrative scalability

o Some factors can limit the scalability (e.g. centralized services, centralized data or

centralized algorithms (doing routing base on complete information)).

o Techniques to fight scalability problems

 Distribution of responsibilities (e.g. DNS name space)

 Hide communication latencies (e.g. client check forms as they are being filled

instead of the server checks the form)

 Apply replication techniques (e.g. caching)

 Security

o Security is the weakest link in Distributed Systems

Hardware Architectures
 2 different hardware concepts:

o Multiprocessors: multiple processors share a pool of memory

o Multicomputers: multiple processor with private memory are interconnected

Hardware concept PLUS MINUS

Multiprocessors, bus-
based

Simpler and cheaper
construction

Not scalable: with more than a few
processors, the bus is saturated

Multiprocessors,
switch-based

Increased concurrency 
gives speed

Delay due to many switches, expensive
linkage & fast crosspoint switches

Software Architectures
System Description Main Goal

Distributed
OS

Tightly-coupled operation system for multiprocessors
and homogeneous multicomputers

Hide and manage
hardware resources

Network OS Loosely-coupled operating system for heterogeneous
multicomputers (LAND and WAN)

Offer local services to
remote clients

Middleware Additional layer atop of NOS implementing general
purpose services

Provide distribution
transparency

Distributed OS

 Takes care of:

o Transparent task allocation to a processor

o Transparent memory access (Distributed Shared Memory)

o Transparent storage

 Provides complete transparency and single view of the system

 Requires multiprocessors or homogenous multicomputers

Network OS

 Provides services (e.g. ftp, nfs, rlogin)

 Not transparent, no single view of the system

 Very flexible with respect to heterogeneity and participation

 Problem: Different clients may mount the servers in different places

Comparison between Systems

Item Distributed OS Network
OS

Middleware-based
OS Multiproc. Multicomp.

Degree of transparency Very high High Low High

Same OS on all nodes Yes Yes No No

Number of copies of OS 1 N N N

Basis for communication Shared
memory

Messages Files Model specific

Resource management Global,
central

Global, distributed Per node Per node

Scalability No Moderately Yes Varies

Openness Closed Closed Open Open

Types of Network Interaction
 Client/Server: synchronous call (Client waits for the result)

 3-tier network application: user-interface level, processing level and data level

 Multi-tiered architecture:

 Peer processes:

 Cluster of servers:

 Web proxy server:

 Code mobility:

 Thin clients:

Inter-Process Communication

Communication layers

 Processes on different computers need to exchange information

 It is necessary to abstract: concentrate on what data to exchange and with whom and ignore

how that data is transferred

 Communication takes place by exchanging messages  many agreements are needed at

many different levels

ISO/OSI Layers

 Layer 1: electrical/mechanical/optical signaling interfaces

 Layer 2: Groups bits into frames and adds some extra information (starting and ending bit

patterns, sequence number, checksum)

 Layer 3: routes packets towards the destination (most common protocol: IP (Internet

Protocol))

Layers 1 to 3 are used to interact between

consecutive nodes in the internet

infrastructure (bridges, routers)

Layers 4 to 7 are used for end-to-end

interaction

 Layer 4:

o provides end-to-end functionality

o Most known protocols: UDP and TCP

o Splits applications messages into packets (message fragmentation)

o Reliable and in-order delivery

 Layer 5: used for synchronization, but not used in practice

 Layer 6: deals with the meaning of bits

 Layer 7: all distributed systems are here (protocols like FTP, HTTP, SSH, SMTP, …)

Type of connections

 Connection-oriented

o Before communication, sender & receiver negotiate what protocols and parameters

will be used

o When done, terminate the connection

o The sender sends a stream of bytes that transparently get grouped in packets and

delivered to the receiver

o Analogous to making a phone call

 Connectionless

o No setup & no termination

o The sender explicitly sends individual packets to the receiver

o Analogous to sending letters by post

Working with Sockets

 UDP and Sockets:  multiple clients can be accessing the server intermittently

 TCP and Sockets:  we need threads to support multiple concurrent clients

Remote Procedure Calls
 Remote procedure calls constitute a middleware-layer functionality between layer 6

(presentation) and layer 7 (application)

 Problems with RPC

o Data representation (different encodings)

o Passing arguments (pass-by-reference)

 Passing arguments

o Arguments passed by reference are passed by copy/restore

 Asynchronous RPC

Distributed Objects
 Common organization using proxy object:

 The Distributed-Object-Model in DCE (Distributed Computing Environment)

o Distributed dynamic (private) objects

o Distributed named (shared) objects

Web Services

Architecture Overview

 Basic parts

o Wire protocol

 Used for the interaction between remote sites

 Should work over any transport protocol (therefore it should be based on

messages instead of procedure calling)

o Description of Web Services

 WSDL (Web Service Description Language): standardized and XML-based way

to describe service interfaces

o Discovery of Web Services

 UDDI (Universal Description, Discovery and Integration) is used like a registry

SOAP
 Provides interoperability at the lowest level

 Defines a message format encoded in XML

 Defines how a client can invoke a remote procedure by sending a SOAP message, and how

the server can reply by sending another SOAP message back

WSDL
 WSDL = Web Service Description Language

 XML syntax for formally describing how to invoke a web service and to communicate with it

UDDI
 Provide a standard, flexible way to discover where a web service is located and where to find

more information about what the web service does

 Provides a registry function for managing information about web services

 Data structure:

 businessEntity: die Komponente beschreibt die Organisation, die den Web Service anbietet

hinsichtlich allgemeine Identifikations- und Kontaktangaben

 businessService: hier sind die jeweils angebotenen Web Services charakterisiert; dabei kann

es sich um mehrere Service-Angebote aber auch um mehrere technologische Formen ein-

und desselben Web Service handeln

 bindingTemplate: diese Komponente gibt nun die detaillierten technischen Informationen

zur Nutzung des Web Service an; dabei wird auf jeweilige Service-Beschreibungen als

technical Model (tModel) referenziert

 tModel: bei dieser Komponente handelt es sich um einen generischen Container, der die

detaillierten Service-Informationen zusammenfasst

 Page Model
o White Pages: für die Kontaktinformationen zum Web-Service-Anbieter und einer

allgemeinen Service-Charakterisierung
o Yellow Pages: als kategorisierte Beschreibung des jeweiligen Web Services
o Green Pages: für die detaillierten (technischen) Angaben zur Nutzung des Web

Services.

Web Services vs. CORBA
 CORBA is designed to run in an organization, Web Services are designed to run on Internet

 In CORBA type identifiers refer to ORB-repository and aren’t generally understood

 HTTP/XML are simple, CORBA has a learning curve

 XML isn’t as efficient as CORBA with its binary formats

 CORBA has transactions, concurrency control, security, access control and persistent objects

Naming and Location

Introduction (Why do we need naming?)
 Naming provides an abstraction useful for

o Providing location independence

o Allowing the relocation of entities

o Allowing a single reference to a set of alternative access points

o In some cases, for offering human-friendly names

 3 general categories of naming types

o Hierarchical naming

o Flat naming

o Attribute-based naming

Hierarchical naming
 Based on the concepts of name spaces (a graph of names)

 Each name is a path in the naming graph (absolute if starting from the root, relative

otherwise)

 Hard Links

o An entity may have multiple names within a namespace  multiple paths that lead

to the same leaf node

 Symbolic Links

o A special node contains the absolute (or relative) name of another node

 Mounting:

o A symbolic link may be referring to a remote name space, through a specific process

protocol

 Merging name spaces

o Adding a new root and mounting two or more namespaces below it

o Problem: absolute names of all namespaces are changed

o Solution: at root node cache the original top-level names

e.g. the root remembers that home, keys map to /vu and mbox maps to /oxford

 DNS

o A distributed directory service

o Hierarchical name space (each level separated by ‘.’)

o One global root

o Because of caching, queries to root servers are relatively rare

o 3 major components

 Domain name space and resource records

 Specification of a tree-structured name space and data associated

with names

 Name servers

 Hold information about a name space subset (zone) and have

pointers to other name servers

 May be authority for a zone (have full information about it)

 Resolvers

 Client programs that extract information from name servers

 DNS layers

 Iterative and recursive name resolution

Flat Naming
 Useful when we want to address a space in a homogeneous way (e.g. memory addressing)

 Very common in centralized systems  in decentralized systems very complicated

 Naïve approach to resolve a name

o Flood all networks asking who has the name in question

o The node that has that name replies

o Problem: doesn’t scale well

o Solution: Distributed Hash Tables

Attribute-based Naming
 Two X.500 directory entries having Host_Name as RDN (relative distinguished name)

Location Service
 Naming versus Location Entities

 Forwarding pointers

o Pointers are forwarded by using the principle of (proxy, skeleton) pairs

o Shortcuts are used:

The same principle is also used in Mobile IP

 Pointer Caches

o Caching a reference to a directory node of the lowest-level domain in which an entity

will reside most of the time

 Scalability

o The scalability issues related to uniformly placing subnodes of a partitioned root

node across the network

 Unreferenced Objects

o Problem: unreachable entity from the root set

o Solution: reference counting

It’s difficult to maintain a proper reference count in the presence of unreliable

communication

o Problem & Solution of incrementing the reference counter too late:

Synchronization

Introduction
 It is necessary to synchronize because

o Synchronize with respect to time

o Not access a resource simultaneously

o Agree on ordering of (distributed) events

o Appoint a coordinator

Time synchronization
 Synchronization with a Time Server

o A time server has very accurate time

o Problem: Messages don’t travel instantly  how can a client synchronize with a time

server

o Solution: Cristian’s algorithm  the transmission delay to the server is estimated

o In Network Time Protocol (NTP) this algorithm is run multiple times, and outlier

values are ignored to rule out packets delayed due to congestion or longer paths

 Logical Clocks

o In many cases absolute time synchronization is not needed  only the order in

which events happen is preserved across all computers

 Lamport timestamps

o “If a and b are events on the same process, then if a occurs before b, CLOCK(a) <

CLOCK(b)”

o “if a and b correspond to the events of a message being sent from the source

process, and received by the destination process, respectively, then CLOCK(a) <

CLOCK(b), because a message cannot be received before it is sent.”

o Wenn ein Prozess eine Nachricht empfängt, die logisch später abgesendet als

empfangen wurde, korrigiert der Empfänger seine lokale Uhr, indem er den Zähler

um mindestens 1 weitersetzt, als den Zeitstempel in der Nachricht.

Mutual Exclusion
 Requirements

o Safety: at most one process may execute in Critical Section at once

o Liveness: requests to enter and exit the critical section should eventually succeed (no

deadlocks or livelocks should occur, and fairness should be enforced)

o Ordering: requests are handled in order of appearance

Centralized Approach

 Easy to implement

 Few messages necessary (3 per CS: Request, OK, Release)

 Fair (first in first out)

 No starvation

 Single point of failure

 Processes cannot distinguish between dead coordinator or busy resource

Distributed Approach (Ricart & Agrawala’s algorithm)

 When a node wants to enter a CS it sends a message with its time and the CS name to all

other nodes

 When a node receives such a request

o If it is not interested in this CS, it replies OK immediately

o If it is interested in this CS

 If its message’s timestamp was older, then replies OK

 Else, it puts the sender in a queue and doesn’t reply anything (yet)

o If it is already in the CS, it puts the sender in queue and doesn’t reply anything (yet)

 A node enters the CS when it received OK but all other nodes

 A node that exits the CS, sends immediately OK to all nodes that it may have placed in the

queue

a) Nodes 0 and 2 express interest in the CS almost immediately

b) Node 0’s message has an earlier timestamp, so it wins. Node 1 (not interested) and node 2

(interested, but higher timestamp) send Ok to node 1, so node 1 enters the CS

c) When node 1 exits the CS, it sends OK to node 2, who enters the CS then

 More messages: 2 * (n – 1)

 No single point of failure but n points of failure. A failure on any one of the n processes

brings the system down

Maekawa’s algorithm improves: don’t wait for approval from all nodes, but from the majority

Token-Ring Approach

 Nodes are organized in a ring and a token goes around

 If a node wants to enter a CS, it can do so when it gets the token

 When it exits the CS, it passes the token to the next node

 Very simple

 No starvation

 Message per entry/exit: 1 to infinite

 Problem if the token is lost: long delay might mean that the token is lost or that someone is

using it

Comparison of these 3 approaches

Leader Election
 Choice of one node among a selection of participants

o Each process gets a unique number

o Initialize: set all elected(i) = NONE

The bully algorithm

 When a node notices that the coordinator is not responding, it starts the election process

 Sends election message to all processes with a higher number; if no response, then it is

elected

 If one gets an election message and has higher ID, he replies ok and starts election

 Process that knows it has the highest ID elects itself by sending a coordinator message to all

others

The ring algorithm

 When a node notices that the coordinator is not responding, it starts the election process

 Sends election message to its successor, with a list containing only its own ID

 When one gets an election message that originated at a different node, it appends its ID to

the list and forwards the message to its successor

 When one gets back its own election message, it picks the highest ID as the leader and

announces it to everyone

The Multicast Problem
 Groups are called closed if only members can send messages

Basic Multicast

 B-multicast(m,g): for each p in g, do send(p,m)

 Problems:

o Implosion of acknowledgements

o Not reliable

Reliable multicast

 Problems

o Inefficient: O(g^2) messages

o Implosion of acknowledgements

Coordination

Vector Clocks
 Problem: Lamport’s timestamp can be used for total ordering of events. However the notion

of causality (dependencies between events) is lost

o The reception of m3(50) could depend on the reception of m2(24) and m1(16).

That’s correct.

o The sending of m2(20) seems to be dependent on the reception of m1(16). That’s

not correct.

o d consistently has a later timestamp than b, so we would wrongly assume that b  d

 Solution:

o Each node maintains a vector of N logical clocks

o One logical clock is its own

o The rest N-1 logical clocks are estimations for the other nodes

o Management:

 They are all initialized by zero

 When an event happens in a node, it increases its own logical clock in the

vector by one

 When a node sends a message, it includes its whole vector

 When a node receives a message, it updates each element in its vector by

taking the maximum of the value in its own vector clock and the value in the

vector in the received message (for every element)

 An event a is considered to happen before event b, only if all elements of the

vector clock of a are less than or equal that the respective elements of the

vector clock of b

o Example:

 a  c because [1,0] < [1,1] and a  d because [1,0] < [1,2]

 same for a  b and c  d

 but b and d are independent, because there is no clear order between [2,0]

and [1,2]

 Implementing at which layer?

o Middleware layer

 Generic approach

 Potential (but not definite) causality is captured

 Some causality may not be captured (external communication can mess up

the assumptions of the middleware)

o Application-specific

 More lightweight

 More accurate

 Puts the burden of causality checking on the application developer

Atomicity
Guarantee that an operation is completed at all participants (or at none of them)

 There are two kinds of atomicity

o Serializability

 Series of operations request by users

 Outside observer sees them each complete atomically in some complete

order

 Requires support for locking

 For that problem, synchronization (logical/vector clocks) is used!

o Recoverability

 Each operation executes completely or not at all

 No partial results

One-Phase Commit (1PC)

1) Client sends „start“ to TC (Transaction Coordinator)

2) TC sends “debit” to A

3) TC sends “credit” to B

4) TC reports “OK” to client

Two-phase Commit (2PC)

2PC fulfills the correctness property (if one commits, no one aborts and if one aborts no one

commits) but not the liveness property (if no failures, and A and B can commit, then commit and if

failures come to some conclusion as soon as possible).

 Solution: introduce timeouts and take appropriate actions

o If TC has not yet sent any “commit” messages it can safely sends “abort” messages

What happens if B (or A) times out?

 If B voted “no” it can unilaterally abort

 If B voted “yes” B and waited too long for an answer, B directly contacts A. It sends “status”

request to A, asking if A knows whether the transaction should commit

o If A received “commit” or “abort” from TC: B decides same way

o If A hasn’t voted anything yet: B and A both abort

o If A voted “no”: B and A both abort

o If A voted “yes”: no decision possible, keep waiting

o If no reply from A: no decision possible, keep waiting

Problem: Crash and Reboot

 Solution: Storing state in non-volatile memory

o TC writes “commit” to disk before sending

o A/B write “yes” to disk before sending

o TC: after reboot, in no “commit” on disk  abort

o A/B: after reboot, if no “yes” on disk  abort

o A/B after reboot if “yes” on disk  use ordinary termination protocol (might block!)

Middleware Systems

TIB/Rendezvous

 Application dependent communication system

 Messages are self-describing

 Coordination Model

1) TC sends „prepare“ message to A and B

2) A and B respond, saying whether they’re willing to

commit

3) If both say “yes”, TC sends “commit” message

4) If either says “no”, TC sends “abort” message

5) A and B “decide to commit” if they receive a

commit message

 Event Model:

 Reliable Communication:

Jini

Jini ist ein Framework zum Programmieren von verteilten Anwendungen, welche besondere

Anforderungen an die Skalierbarkeit und die Komplexität der Zusammenarbeit zwischen den

verschiedenen Komponenten stellen und nicht durch existierende Techniken bedient werden

können. Jini bietet eine flexible Infrastruktur, über die Dienste (Services) in einem Netzwerk

bereitgestellt werden können.

JavaSpaces in Jini

Communication Events in Jini

http://de.wikipedia.org/wiki/Framework
http://de.wikipedia.org/wiki/Skalierbarkeit
http://de.wikipedia.org/wiki/Infrastruktur

Sychronization of Transactions:

Comparison of TIB/Rendezvous and Jini

Distributed File Systems

Storage systems and their properties:

File system modules:

 Distributed File System Requirements

o Transparency (access, location, mobility, performance and scaling)

o Concurrent file updates

o File replication

o Hardware & software heterogeneity

o Fault tolerance

o Consistency

o Security

o Efficiency

NFS

Architecture:

Local and remote file systems:

Transparency
Access NFS client process
Location File name space identical
Mobility Remounts possible
Scaling Experiments are positive

Concurrent file updates Not supported
File replication Read-only files
Hard- & Software heterogeneity Given
Fault tolerance Stateless and idempotent
Consistency Close to one-copy semantics
Security Standard 
Efficiency Seems ok

Andrew File System

File name space:

System call interception in AFS:

Implementation of file system calls in AFS:

User process UNIX kernel Venus Net Vice
open(FileName,
mode)

If FileName refers
to a file in shared
file space, pass the
request to Venus.

Open the local file
and return the file
descriptor to the
application.

Check list of files in local cache.
If not present or there is no
valid callback promise, send a
request for the file to the Vice
Server that is custodian of the
volume containing the file.

Place the copy of the file in the
local file system, enter its local
name in the local cache list and
return the local name to UNIX.





Transfer a copy of the
file and callback
promise to the
workstation. Log the
callback promise.

read(FileDescriptor,
Buffer, length)

Perform a normal
UNIX read
operation on the
local copy.

write(FileDescriptor,
Buffer, length)

Perform a normal
UNIX write
operation on the
local copy.

close(FileDescriptor) Close the local
copy and notify
Venus that the file
has been closed.

If the local copy has been
changed, send a copy to the
Vice server that is the
custodian of the file

 Replace the file
contents and send a
callback to all other
clients holding callback
promises on the file.

 Important aspects

o Explicitly excludes databases

o UNIX kernel modifications (file system on user level)

o Location database replicated throughout servers

o Read-only replicas

o Bulk transfers (64 KB)

o Partial file caching

o Wide area support

Google File System
 Files are distributed over multiple servers in chunks of 64 MB like in a RAID (File Striping)

 Master servers are used as directories only

Peer-to-Peer Systems

Historical Overview
 1970s & 1980s:

o Limited reach of the internet

o Central committee to organize and maintain it

 1990s:

o Tremendous expansion and diffusion

o Killeraps: www and e-commerce

o Client/server model

 Late 1990s until today

o P2P as an alternative to client/server

o End-computers play a role, contribute, interact

 June 1999

o Napster: Users establish a virtual network, entirely independent of physical network

and administrative authorities or restrictions.

o Basis: UDP and TCP connections between peers

o Users not only download content, but also provide content to others

 December 1999

o RIAA lawsuit against the central lookup server but popularity of Napster skyrocketed

 July 2001

o Napster lost lawsuit  network breaks down immediately

 March 2000

o Open source project Gnutella: fully decentralized  no single point to attack

 End of 2000

o Superpeer concept  hierarchical routing layer  significantly improves scalability

and efficiency

 2002

o BitTorrent started

 2003

o BitTorrent caused majority of traffic

o Downloads significantly faster, due to mechanisms against free-raiding

 Middle of 2003

o Skype

Define P2P
P2P is a class of systems where:

 Resources available at the edges of the internet are utilized (storage, CPU, bandwidth,

content, human presence)

 Service is carried out collectively (nodes share both benefits and duties)

 Irregularities and dynamicity are treated as the norm

Main advantages of P2P:

 Inherently scalable (higher demand  higher contribution)

 Increased (massive) aggregate capacity

 Utilize otherwise wasted resource

 Distribute load and administration

 Designed to be fault tolerant

 Inherently handle dynamic conditions

Important issues in P2P
 Overlay networks

Overlay types

Unstructured P2P Structured P2P

 Any tow nodes can establish a link

 Topology evolves at random

 Topology reflects desired properties of linked
nodes

 Topology strictly determined by
node IDs

 Overlay maintenance

o Bootstrapping (how to join the system)

o Continuous maintenance (how to handle changes and faults)

 Scalability

o Avoid central server

o Distribute load on multiple peers

o Limit load per peer

 Fairness

o Load balancing

o User behavior

 Users are selfish and independent (maximize own benefit)

 Give incentives for fair play

 To maximize benefit  abide by the rules

 Dynamicity and adaptability

o Changing topology because nodes join and leave

o Changing data (files are added and deleted, content is changed)

o Changing profiles (user changes interest, new semantic categories introduced)

o Change in load

 Fault tolerance

o Robustness of the overlay

o Resilience to failures

o Resistance to node & link crashes

o Availability

 Self-organization

o No one keeps full state  nodes take local decisions

o Globally smooth operation should emerge from local decisions

 Performance

o Efficiency in searching, routing, discovering relationships, etc.

o Locality  reduce network latency

 Privacy

o Anonymity

o Reputation

o Resistance to censorship

 Security

o Defend against DDOS attacks

o Disseminate worm protection patches  speed is crucial

o Make P2P systems themselves secure

 Legal issues

o Copyright violation

o Direct and indirect infringement

 Simplicity

Application Areas

 Sharing content

 large distributed storage

 very high variation of content

 unstable availability

 no guarantees

 Network storage

o Applications: OceanStore and PAST

 Contributing bandwidth

 Sharing CPU

o Increasing requirements for High Performance Computing

o Available computing power of endpoints often unused

o Use P2P to bundle processor cycles

o Examples: SETI@home, BOINC, World Community Grid

 Collaboration

o Presence information (e.g. Instant Messaging Systems)

o Document collaboration

 P2P networks which create a connected repository from the local data on

the individual peers

o Collaboration

 Synchronous communication, online meetings, edit shared documents, …

 P2P Groupware

 Avoid additional administrative task and central data management

 All of the data created is stored on each peer and is synchronized

automatically

Basics in File Sharing
 Napster

o Relies on a central index but files don’t reside on a central server

o Quick searching (faster and better than Gnutella)

o Users come and go  user/search database continually updated

o Automatic file sharing

o Single server to bring down (this centralization is ultimately its downfall)

 Gnutella

o Pure P2P

o Decentralized method of searching ( harder to “pull the plug”)

o Search by flooding

o File transfer is direct ( no anonymity)

o Problems

 70% of people shared no files

 50% of search responses from top 1% of hosts

 Reverting to client/server  suddenly not so hard to shut down

 Non-standard implementation  some clients are dodgier than others

 Kazaa

o Hybrid P2P

o Files and control data are encrypted

o Everything in HTTP request and response messages

o Architecture

 Each peer is either a supernode or is assigned to a supernode

 Each supernode knows about many other supernodes

 Supernodes act as mini-Napster hubs tracking the content and IP addresses

of their descendants

 Dedicated user authentication server and supernode list server

o Overlay maintenance

 List of potential supernodes included within software download. New peer

goes through list until it finds operational supernode

P2P Content Sharing

Motivation behind Decentralized Content Distribution
 A growing number of well-connected users access increasing amounts of content

 Servers and links are overloaded because of the number of clients, the size of content and

flash crowds (e.g. 9/11)

 Tremendous costs necessary to make server farms scalable and robust

 Solution: Cooperative Distribution:

o Principle: utilize bandwidth of edge computers

o Self-scaling network: more clients  more aggregate bandwidth  more scalability

o Self-organizing: robust against failures and flash crowds

BitTorrent
 Designed for the transfer of large files to many clients

 Based on swarming: a server sends different parts of a file to different clients, and the clients

exchange chunks with one another

Torrent file

 Tracker address (IP + Port)

 Bytes per chunk

 Number of chunks

 Fear each chunk the SHA1 hash value (helps validate the correctness of downloaded chunks)

Session Initiation

1) Make the torrent file available on a web server

2) The tracker tracks peers

a. Initially it knows at least one seeder

b. Matches new peers with existing ones, to allow them collaborate

3) On the client side:

a. Clients contacts the tracker (over HTTP or HTTPS)

b. The tracker returns a set of active peers

c. Clients regularly report state to tracker

Peer Sets

 Tracker picks peer at random on its list

 Once a peer is incorporated in the BitTorrent session, it can also be picked to be in the peer

set of another peer  a peer knows both older peers and newcomers

 A peer communicates with its initial peer set and the other peers that contacted it but not

with other peer sets

File Transfer Algorithm

 Initially file broken into chunks (typically 256 kB)

 Reports sent regularly (at start-up, shutdown and every 30 minutes) to tracker

 Peers connect with each other over TCP full duplex (data is transit in both directions)

o Upon connection, peers exchange their list of chunks

o Each time a peer has downloaded a chunk and checked its integrity, it advertises it to

its peer set

Connection States

 “Interesting”: you have a chunk that I want  allows a peer to know its possible client for

upload

 “Chocked”: I don’t want to send you data at the time

Chunk Selection Policy

Which missing chunk should we request from other peers?

 Simple strategy: random selection

 Biased strategy: peers apply the rarest-first policy

o Rare chunks can more easily be traded with others

o Maximize the minimum number of copies in any given chunk in each peer set

BitTorrent uses rarest-first policy except for newcomers that use random to quickly obtain a first

block

Peer Selection Policy

 Seeders’ policy: the ones that offer the best upload rates

 Leechers’ policy: the ones that also serve us: tit for tat

Find better hosts:

 Reconsider choking/unchoking every 10 seconds

 Optimistically unchoke a random peer every 30 seconds to give a chance to another host to

provide better service

 Newcomers have less data to offer  give them “priority” in the optimistic unchoke

BitTorrent: Measurements & Evaluation
 Clients’ behavior

o When they are leechers they have no chois due to tit-for-tat

o Once download is completed

 Clients stay on average 3 hours after download

 The transfer is long, may complete overnight

 The content is legal (RIAA will not sue)

 The users are very kind

 Seeders vs. Leechers

o Presence of seeders is a key feature of BitTorrent

o Over the 5 months (of the study) they contributed twice as much volume as leechers

 Speed

o Aggregate throughput of system (sum over all leechers at each instant) was higher

than 800 Mb/s

o This is more than 80 mirrors each sustaining a 10 Mb/s service

o Nevertheless there is a high variance in download throughputs

 Download and Upload

 Tit-for-tat policy

o Most of the file provided by peers that connected to us (not from original peer set)

o Policy must enforce cooperation among peers but also must allow transfer even if

bandwidth not perfectly balanced

 E.g. I don’t give you anything because I can send you at 100 kb/s whereas

you can only send at 80 kb/s

Distributed Hash Tables

What are DHTs
 Strategies to locate content in P2P

o Simple strategy: flooding

 Search cost at least O(N)

 Need many replicas to keep overhead small

o Centralized index

 Single point of failure and high load on this index

o Indexed search

 Store particular content on particular nodes

 When a node wants this content, go to the node that is supposed to hold it

 Challenges

 Avoid bottlenecks  distribute the responsibilities evenly

 Self-organizing w.r.t. nodes joining or leaving

 Fault-tolerance and robustness

 Hashtables

o Network has N nodes

o Each data item has a key

o Key is hashed to find responsible peer for it

o Each node is expected to hold 1/N of the items, so that storage is balanced

o It is also necessary to balance routing load

 DHT Design

o Should be able to route to any node in a few hops (small diameter)

o DHT routing mechanisms should be decentralized

o The number of neighbors for each node should remain “reasonable” (small degree)

o To achieve good performance, DHTs must provide low stretch

o Should gracefully handle nodes joining and leaving

 Reorganize neighbor sets

 Bootstrap mechanisms to connect new nodes into the DHT

 Repartition the affected keys over existing nodes

Pastry
 Circular m-bit ID space for both keys and nodes

 Addresses have m/b digits

 A key is mapped to the node whose ID is numerically-closest to the key ID

Pastry Routing

 Can be done in O(log N) hops

Pastry State and Lookup

 For each prefix, a node knows some other node (if any) with same prefix and different next

digit

 When multiple nodes, choose the topologically-closest to maintain good locality properties

Whenever a peer receives a packet to route or wants to send a

packet it first examines its leaf set and routes directly to the

correct node if one is found. If this fails, the peer next consults

its routing table with the goal of finding the address of a node

which shares a longer prefix with the destination address than

the peer itself. If the peer does not have any contacts with a

longer prefix or the contact has died it will pick a peer from its

contact list with the same length prefix whose node ID is

numerically closer to the destination and send the packet to that

peer. Since the number of correct digits in the address always

either increases or stays the same — and if it stays the same the

distance between the packet and its destination grows smaller

— the routing protocol converges.

Pastry Routing Table

Node Joining

Chord
 Circular m-bit ID space for both keys and node IDs

 Each key is mapped to its successor node

 Each node responsible for O(K/N) keys

Lookup in Basic Chord

 Each node knows only two other nodes on the ring

o Successor

o Predecessor

 Lookup is achieved by forwarding requests around the

ring through successor pointers

 Requires O(N) hops

Lookup in Complete Chord

Chord Ring Management

Fingers are for efficiency, not necessarily correctness:

 One can always default to successor-based lookup

 Finger table can be updated lazily

Joining the Ring

1) Initialize predecessor and all fingers of new node j

a. Locate any node n in the ring

b. Ask n to lookup the peers at j + 20, j+21, j+22, …

c. Use results to populate finger table of j

2) Update predecessor and fingers of existing nodes

a. New node j calls update function on existing nodes that must point to j (nodes in the

range [j-2i, pred(j)-2i+1])

b. O(log N) nodes need to be updated

 Each node knows these two nodes

o Successor

o Predecessor

 Each node has m fingers

o n.finger(i) points to node on or after

2i steps ahead

o n.finger(0) == n.successor

o O(log N) states per node

 Lookup is achieved by following longest

preceding finger, then the successor

 O(log N) hops

3) Transfer some keys to the new node

a. Connect to successor

b. Copy keys from successor to new node

c. Update successor pointer and remove keys

Leaving the Ring (or failing)

 Node departure are treated as node failures

 Failure of nodes might cause incorrect lookup

 Solution: successor list

o Each node n knows r immediate successor

o After failure, n contacts first alive successor and updates successor list

o Correct successors guarantee correct lookups

 If r = 2 log N, the ring is with a high probability (1-1/N) not broken when half of the nodes fail

Stabilization

 Stabilization algorithm periodically verifies and refresh node pointers (including fingers)

Conclusions

 Search types only allow equality and not range

 Scalability

o Diameter (search and update): O(log N)

o Degree: O(log N)

o Construction: O(log2 N) if a new node joins

 Robustness: replication might be used by storing replicas at successor nodes

Map Reduce
MapReduce ist ein von Google Inc. eingeführtes Framework für nebenläufige Berechnungen über

große (mehrere Petabyte) Datenmengen auf Computerclustern. Dieses Framework wurde durch die

in der funktionalen Programmierung häufig verwendeten Funktionen map und reduce inspiriert,

auch wenn die Semantik des Frameworks von diesen abweicht. MapReduce-Implementierungen

wurden in C++, Erlang, Java, Python und vielen anderen Programmiersprachen realisiert.

Hadoop

 Open source project written in Java

 Hadoop Core includes

o Distributed file system  distributes data

o Map/Reduce  distributes application

 Hardware cluster

o Typically in 2 level architecture

o Nodes are commodity PCs

http://de.wikipedia.org/wiki/Google_Inc.
http://de.wikipedia.org/wiki/Framework
http://de.wikipedia.org/wiki/Nebenl%C3%A4ufigkeit
http://de.wikipedia.org/wiki/Petabyte
http://de.wikipedia.org/wiki/Computercluster
http://de.wikipedia.org/wiki/Funktionale_Programmierung
http://de.wikipedia.org/w/index.php?title=Map_%28Informatik%29&action=edit&redlink=1
http://de.wikipedia.org/w/index.php?title=Reduce_%28Informatik%29&action=edit&redlink=1
http://de.wikipedia.org/wiki/Semantik
http://de.wikipedia.org/wiki/C%2B%2B
http://de.wikipedia.org/wiki/Erlang_%28Programmiersprache%29
http://de.wikipedia.org/wiki/Java_%28Programmiersprache%29
http://de.wikipedia.org/wiki/Python_%28Programmiersprache%29

 Distributed file system

o Single namespace for entire cluster (managed by a single namenode)

o Files are single-writer and append-only

o Optimized for streaming reads of large files

o Files are replicated to several datanodes for reliability

o Client talks to both namenode and datanodes (but data is not sent through the

namenode)

o Throughput of file system scales nearly linearly with the number of nodes

 File Block placement

o Blocks are placed on the same node, on a different rack and on the other rack

o Clients read closest replica

 Data correctness

o Data is checked with CRC32

o Validation periodically and on file access

Map/Reduce

 Dataflow

 Features

o Each task can process data sets larger than RAM

o Automatic re-execution on failure

o Locality optimizations (Map tasks are scheduled close to the inputs when possible)

 How is Yahoo using it?

o Build a huge data warehouse with many Yahoo! Data sets

o Couple it with a huge computer cluster and programming models to make using the

data easy

o Provide this as a service to the researchers  experiments can be run much more

quickly with this environment

o Examples

 Search needs a graph of the “known” web

 NY Times scanned offline conversion of public domain articles from 1851-

1922 (Hadoop was uses to convert scanned images to PDF)

 Terabyte Sort Benchmark (by Microsoft) was won by Hadoop

 Further issues

o Better scheduling

o Splitting core into subprojects

o Security

o High availability

Google MapReduce

Example: Distributed Grep

Functionality

 Map

o Accepts input key/value pair

o Emits intermediate key/value pair

 Reduce

o Accepts intermediate key/value pair

o Emits ouput key/value pair

Suitable for your task if

 Have a cluster

 Working with large dataset

 Working with independent data (or assumed)

 Can be cast into map and reduce

